BOOK CHAPTER: Ontological Politics of the Resource Frontier: A Hydrosocial Analysis of the Mekong River in Northern Thailand

Publication date: November 2022

Publication: Extracting Development: Contested Resource Frontiers in Mainland Southeast Asia

Chapter title: Ontological Politics of the Resource Frontier: A Hydrosocial Analysis of the Mekong River in Northern Thailand

Authors: Thianchai Surimas and Carl Middleton

Editors: Oliver Tappe and Simon Rowedder

See more details on the book here.

In this chapter, in the context of the severe drought of 2019 and 2020, we examine the resource politics of the Mekong River in Northern Thailand as revealed through the practices, narratives, and knowledge productions of several competing networks that shape the Mekong River as a resource frontier. These include the community and civil society movement led Ing Peoples Council, and the intergovernmental Mekong River Commission and the Lancang-Mekong Cooperation. Our conceptual approach reflects the growing recognition of the heterogeneity of water cultures and histories (or ‘water worlds’) in recent academic literature, and the multiple ontologies of water that underpin them. This leads to our interest in how resource politics at the resource frontier reveal an enactment of multiple ontologies and their ontological politics, whereby human actors compete to further their own interests by naturalizing their ontology while marginalizing others. Overall, we argue that politics at the resource frontier are ontological politics contesting the very meaning of the Mekong River and its future form, be it as embedded in and patterning the socio-cultural relations of riverside communities in Northern Thailand, or as part of an ecological modernization and economic integration and growth agenda as envisioned by the region’s governments.

Please contact Dr. Carl Middleton for more information.

Citation: Surimas, T. and Middleton, C. (2022) “Ontological Politics of the Resource Frontier: A Hydrosocial Analysis of the Mekong River in Northern Thailand” (pp 28-48) in Tappe, O. and Rowedder, Sand (eds.) Extracting Development: Contested Resource Frontiers in Mainland Southeast Asia. ISEAS - Yusof Ishak Institute: Singapore

REPORT: Strengthening Water Diplomacy Through Water Data Sharing and Inclusive Evidence-Based Transboundary Governance

CDRI Report-210722.png

Publication date:
August 2021

Publication:
Strengthening Water Diplomacy Through Water Data Sharing and Inclusive Evidence-Based Transboundary Governance

Authors:
Carl Middleton, Anisa Widyasari, Kanokwan Manorom, David J. Devlaeminck, Apisom Intralawan

Download the report here.

In transboundary river basins, water data and information sharing are the foundation of trust building, evidence-based cooperation and water diplomacy between riparian states, and also with non-state actors including riparian communities and civil society.  This research report examines what options exist for improved evidence-based transboundary water governance in the Mekong-Lancang basin building from recent improvements in basin-wide water data sharing. It presents a review of international best practice on water data sharing in international law, outlines existing institutionalized water data sharing arrangements in the Mekong-Lancang basin, analyzes how the availability of water data and its analysis influenced hydropolitics and geopolitics during the 2019-2020 drought, and presents recent empirical evidence from North and Northeast Thailand on riparian communities’ access to water data. The report concludes by identifying policy options on three themes: comprehensive and accessible scientific water data; diversity of water knowledge; and deepening water diplomacy and institutionalizing transboundary accountability.

Please contact Dr. Carl Middleton for more information.

Citation: Middleton, C., Widyasari, A., Manorom, K., Devlaeminck, D.J. and Intralawan, A. (2021) Strengthening water diplomacy through water data sharing and inclusive evidence-based transboundary governance. August, 2021. Center for Social Development Studies, Faculty of Political Science, Chulalongkorn University, and Cambodia Development Research Institute: Bangkok and Phnom Penh.

This report is part of our project Water Diplomacy in the Mekong Basin. You can visit the project page here.

ธรรมชาติเชิงวิพากษ์: นอกเหนือจากการแบ่งปันข้อมูลน้ำร่วมกันแล้ว แม่น้ำหลานซาง-แม่โขง ยังต้องการธรรมาภิบาลน้ำที่รับผิดชอบ

โดย ผศ.ดร.คาร์ล มิดเดิลตัน[1]

[English version available here]

วิวแม่น้ำโขงที่มองจากเวียงจันทร์ ประเทศลาว (เครดิต: ภาพถ่ายจาก HEINRICH-BÖLL-STIFTUNG SOUTHEAT ASIA)

วิวแม่น้ำโขงที่มองจากเวียงจันทร์ ประเทศลาว (เครดิต: ภาพถ่ายจาก HEINRICH-BÖLL-STIFTUNG SOUTHEAT ASIA)

ในปี 2562 และอีกครั้งในปี 2563 แม่น้ำโขงหรือรู้จักในชื่อแม่น้ำหลานซางที่ตั้งอยู่ในประเทศจีน ได้ประสบกับปัญหาการไหลของกระแสน้ำที่ลดต่ำลง สิ่งนี้ได้สร้างความยากลำบากให้กับผู้คนนับล้านที่อาศัยอยู่ในบริเวณแม่น้ำดังกล่าว

เกิดการถกเถียงในระดับภูมิภาคอย่างเอาจริงเอาจังและแบ่งออกเป็นหลายฝักหลายฝ่ายเกี่ยวกับการลดลงของประแสน้ำอันเกิดจากความแห้งแล้งหรือผลกระทบจากการก่อสร้างเขื่อนขนาดใหญ่ที่ดำเนินการอย่างต่อเนื่องตลอดทั่วทั้งลุ่มน้ำตั้งแต่ปี พ.ศ. 2533 เป็นต้นมา สิ่งนี้ได้ส่งผลให้มีการเฝ้าติดตามและสนใจเป็นอย่างมากในการก่อสร้างเขื่อนไฟฟ้าพลังน้ำทั้ง 11 แห่ง ที่ตั้งอยู่บนลุ่มแม่น้ำสายหลักในประเทศจีนเนื่องจากขาดความโปร่งใสในการดำเนินงานก่อสร้างของโครงการเขื่อนและปริมาณการกักเก็บน้ำในอ่างเก็บน้ำ

ในเดือนเมษายน 2563 องค์กรที่ปรึกษาด้านการวิจัยที่ชื่อว่า อายออนเอิร์ธ (Eyes on the Earth) ได้ทำการเผยแพร่แบบจำลองกระแสน้ำตามธรรมชาติ (ก่อนที่จะมีการสร้างเขื่อน) ของแม่น้ำหลานซาง เพื่อคาดการณ์ผลกระทบของเขื่อนที่ตั้งอยู่ปลายน้ำในพื้นที่ภาคเหนือของประเทศไทย เนื่องจากไม่มีการตรวจสอบอย่างจริงจังในทรัพยากรสาธารณะอันเป็นที่ตั้งของสถานีวัดน้ำในประเทศจีน แบบจำลองทางสถิติ (Statistical Model) ได้ใช้ข้อมูลดาวเทียมเพื่อสร้าง “ดัชนีความเปียกชื้น” เพื่อคาดการณ์ปริมาณน้ำในอ่างกักเก็บน้ำและหลังจากนั้นจะนำผลที่ได้นี้ไปเชื่อมโยงกับการตรวจวัดระดับน้ำรายเดือนที่สถานีวัดน้ำใน อ.เชียงแสน ประเทศไทย โดยรวมแล้วการศึกษาครั้งนี้แสดงให้เห็นว่าตั้งแต่มีการก่อสร้างเขื่อนในแม่น้ำหลานซางที่ได้รับมอบอำนาจหน้าที่ให้ดำเนินการก่อสร้างในช่วงต้นปี 2533 ซึ่งระดับน้ำมีการลดระดับลงในช่วงฤดูฝนและเพิ่มสูงขึ้นในช่วงฤดูแล้ง การผิดปกติเพิ่มมากขึ้นและเกิดความผันผวนอย่างรวดเร็วในระดับน้ำทั้งในฤดูแล้งและฤดูฝน การเปลี่ยนแปลงเหล่านี้ปรากฏชัดตั้งแต่ปี 2555 เมื่อเขื่อนนัวจาตู้ (Nouzhadu) ที่มีกำลังการผลิตกระไฟฟ้าขนาด 5,850 เมกะวัตต์ เริ่มเติมน้ำเข้าไปในอ่างเก็บน้ำนั่นจึงทำให้เห็นว่าอ่างเก็บน้ำแห่งนี้มีปริมาณขนาดใหญ่กว่าทั้ง 4 เขื่อนที่สร้างขึ้นมาก่อนหน้านี้รวมกันเสียอีก

ในขณะที่ข้อสรุป (ความคิดเห็น) ต่างๆ เหล่านี้ได้มาจากการศึกษาทางวิทยาศาสตร์ที่ดำเนินการมาก่อนหน้านี้ รายงานที่จัดทำรายงาน นว่าEำเนินการมาก่อนหน้านี้ ทยาี่จะโดย Eyes on the Earth ได้รับความสนใจจากสื่อเป็นอย่างมากทั้งในระดับภูมิภาคและระดับนานาชาติเนื่องจากกลุ่มภาคประชาสังคมหลายกลุ่มรวมทั้งตัวแทนของรัฐบาลสหรัฐอเมริกาอ้างว่ามีหลักฐานชิ้นสำคัญที่บ่งชี้ว่ารัฐบาลจีนจะต้องแสดงความรับผิดชอบต่อปัญหาความรุนแรงจากภัยแล้งในช่วงระหว่างปี พ.ศ.2562 – 2563 อันเนื่องมาจากการ “ปิดก๊อก” หรือ กักตุนน้ำ” เพื่อเก็บไว้ใช้ของประเทศจีน ถ้อยแถลงการณ์เหล่านี้ได้นำไปสู่การโต้แย้งจากนักการทูตและนักวิจัยของจีนเป็นจำนวนมาก

การกล่าวอ้างที่สำคัญดังกล่าวนำไปสู่การตรวจสอบรายงานของ Eyes on Earth อย่างละเอียดถี่ถ้วน ได้แก่คณะกรรมาธิการแม่น้ำโขง (The Mekong River Commission: MRC) ออสเตรเลีย-ความร่วมมือแม่น้ำโขงเพื่อทรัพยากรสิ่งแวดล้อมและระบบพลังงาน (The Australia – Mekong Partnership for Environmental Resource and Energy Systems: AMPERES) และนักวิชาการที่ตั้งข้อสังเกตุถึงข้อจำกัดบางอย่าง เช่น ในรายงานได้แสดงให้เห็นถึงผลลัพธ์ของระดับน้ำแต่ไม่สามารถพิจารณาได้ว่าสิ่งนี้นั้นเทียบเท่ากับปริมาณน้ำ ไม่ได้บ่งบอกว่าจีนสามารถกักเก็บน้ำได้ทั้งหมดในช่วงฤดูฝน ด้วยเหตุนี้ ความสามารถในการยั้บยั้งการไหลของน้ำในแม่น้ำอย่างเต็มกำลังเป็นสาเหตุให้เกิดความแห้งแล้งในพื้นที่บริเวณปลายน้ำ และจะดีมากยิ่งขึ้นกว่าหากการศึกษาครั้งนี้ได้รับการทบทวนและตรวจสอบก่อนที่จะมีการเผยแพร่สู่สาธารณะ ยิ่งไปกว่านั้น นักวิจัยจาก AMPERES ได้กล่าวว่าการนำเสนอรายงานของ Eyes on Earth ในการอภิปรายสาธารณะบ่อยครั้งมักจะเกินกว่าการค้นพบที่แท้จริง ในเดือนกรกฎาคม 2563 นักวิจัยจากมหาวิทยาลัยชิงหฺวา (Tsinghua University) ซึ่งเป็นสถาบันวิจัยชั้นนำในประเทศจีนได้กล่าวเพิ่มเติมในข้อถกเถียงนี้ด้วยการศึกษาที่ระบุว่าภูมิภาคนี้ประสบปัญหาภัยแล้งอยู่ก่อนแล้ว อีกครั้งหนึ่งที่ AMPERES ได้ตรวจสอบการวิจัยนี้ซึ่งค้นพบว่าจำเป็นที่จะต้องมีการชี้แจงเพิ่มเติมเยอะมากขึ้นและข้อสรุปของการศึกษาเกี่ยวกับประโยชน์ของเขื่อนผลิตไฟฟ้าแบบขั้นบันได (Dam Cascade) ในประเทศจีนเพื่อบรรเทาภาวะภัยแล้งที่พื้นที่ปลายน้ำอาจทำให้เกิดการไขว้เขวได้

โดยรวมแล้วการศึกษาที่มีอยู่โดยทั้งหมดเกี่ยวกับผลกระทบของเขื่อนขั้นบันไดในประเทศจีนที่มีต่อประเทศปลายน้ำในขณะนี้มักอาศัยมักอาศัยข้อมูลที่ไม่สมบูรณ์ครบถ้วนเนื่องจากไม่สามารถเข้าถึงข้อมูลที่มีอยู่แล้วได้ ยิ่งไปกว่านั้นความแห้งแล้งในปี 2562 และ 2563 ยังเกิดขึ้นในช่วงเวลาที่ภูมิศาสตร์การเมืองทวีความรุนแรงมากขึ้นระหว่างสหรัฐอเมริกาและจีน ในเอเชียตะวันออกเฉียงใต้และทั่วโลก ในเดือนกันยายนปี 2563 ความร่วมมือลุ่มน้ำโขง-สหรัฐฯ​ (Mekong-U.S. Partnership: MUSP) ได้เปิดตัวขึ้นซึ่งพยายามที่จะกระชับความสัมพันธ์ระหว่างประเทศปลายน้ำและสหรัฐอเมริกาให้แน่นแฟ้นยิ่งขึ้น นั่นจึงทำให้จีนควบคุมทรัพยากรน้ำในลุ่มน้ำตอนบนด้วยความระมัดระวัง กระนั้นการทำให้เป็นการเมืองของงานวิจัยซึ่งมีข้อจำกัดของการศึกษาถูกลดทอนลงและผลลัพธ์ที่เปลี่ยนแปลงไปให้เป็นเรื่องเล่าที่เรียบง่ายนั้นมีความเสี่ยงที่จะทำลายความน่าเชื่อถือของหลักฐานทางวิทยาศาสตร์ที่สามารถบอกกล่าวได้ถึงกระบวนการกำกับดูแลน้ำข้ามพรมแดนตลอดจนกระบวนการตัดสินใจ

ในลุ่มน้ำหลานซาง-แม่โขง การกำกับดูแลน้ำข้ามพรมแดนมีความซับซ้อนเนื่องจากผลประโยชน์ที่หลากหลายของผู้มีส่วนได้ส่วนเสียทั้งจากรัฐและไม่ใช่รัฐ​ สถาบันหลักที่สำคัญทั้งสองแห่งที่วางกรอบโครงสร้างเพื่อการกำกับดูแลน้ำข้ามแดนที่มีระหว่างรัฐต่อรัฐ (State-to-State) ได้แก่ คณะกรรมาธิการแม่น้ำโขง (The Mekong River Commission: MRC) และ กรอบความร่วมมือแม่โขง-หลานซาง (Mekong – Lancang Cooperation: MLC) เกี่ยวกับสาเหตุของกระแสน้ำไหลช้าและภัยแล้งในปี 2562 เดือนธันวาคม 2562  LMC และ MRC มุ่งมั่นที่จะทำการศึกษาวิจัยร่วมกันว่าสถานภาพของการศึกษานี้จะไม่ได้ถูกประกาศต่อสาธารณะ คณะกรรมาธิการแม่น้ำโขง เป็นองค์กรตามสนธิสัญญาที่ก่อตั้งขึ้นในปี 2538 ระหว่างกัมพูชา ลาว ไทยและเวียดนาม กับ จีนและเมียนมา ในฐานะคู่เจรจา กรอบความร่วมมือแม่โขง-หลานซาง เปิดตัวขึ้นครั้งแรกในเดือนมีนาคม 2559 และรวมทั้ง 6 ประเทศของกลุ่มลุ่มแม่น้ำหลานซาง-แม่โขง โดยจีนมีบทบาทสำคัญในฐานะประธานร่วมและนักลงทุน และการจัดการทรัพยากรน้ำเป็น 1 ใน 5 ประเด็นสำคัญที่จะต้องดำเนินการ ในเวลาเดียวกัน MRC และ LMC ได้ร่วมมือและแข่งขันกันในการมีอำนาจหน้าที่ บทบาท และการมีอิทธิพลในลุ่มแม่น้ำโขง - หลานซาง

ในช่วงตลอด 2 – 3 ปีที่ผ่านมา การเรียกร้องอันยาวนานจากประเทศท้ายน้ำ ภาคประชาสังคมและชุมชนที่มีต่อจีนเพื่อการแบ่งปันข้อมูลน้ำทวีความรุนแรงมากขึ้น ตั้งแต่ปี 2539 เป็นต้นมา จีนได้มีการแบ่งปันข้อมูลเฉพาะข้อมูลฤดูฝน (มิถุนายน – ตุลาคม) และบางครั้งบางคราวจะมีการให้ข้อมูลฤดูแล้ในช่วงเวลา ‘ฉุกเฉิน’ ตามที่นักวิชาการ สจวร์ต บิบา (Stuart Biba) กล่าวว่ามันเป็นมาตราการเฉพาะกิจเพื่อลดการวิพากษ์วิจารณ์​ ยิ่งไปกว่านั้น ข้อมูลที่ปล่อยออกมายังไม่สมบูรณ์เพียงพอที่จะสรุปได้อย่างชัดเจนถึงบทบาทของเขื่อนต้นน้ำที่มีบทบาทในการไหลของน้ำในแม่น้ำ ในบริบทของการวิพากษ์วิจารณ์ที่รุนแรงในช่วงปี 2563 ที่กล่าวถึงเมื่อตอนต้น ในวันที่ 22 ตุลาคม 2563 MRC ได้ประกาศว่าจีนได้ทำข้อตกลงที่จะแบ่งปันข้อมูลตลอดทั้งปี จำนวน 2 ครั้งต่อวัน สำหรับปริมาณน้ำฝนและระดับแม่น้ำจากสถานีวัดน้ำทั้ง 2 แห่งที่ตั้งอยู่ในเมืองม่านวาน (Manwan) และ จิงหง (Jinghong)

การเตรียมการใหม่สำหรับการแบ่งปันข้อมูลน้ำแบบรัฐต่อรัฐถือเป็นความก้าวหน้าที่สำคัญ รวมถึงการที่จีนได้เพิ่มความร่วมมือยิ่งขึ้นกับคณะกรรมาธิการแม่น้ำโขง ในการแบ่งปันข้อมูลมากกว่าการยืนกรานที่แบ่งปันข้อมูลผ่านกรอบความร่วมมือแม่โขง-หลานซาง อย่างไรก็ตาม ในแง่ของการแบ่งปันข้อมูลน้ำยังมีอีกมากที่ต้องทำเพื่อทำความเข้าใจสถานการณ์พื้นที่ต้นน้ำในประเทศจีน โดยเฉพาะอย่างยิ่งจำนวนสถานีตรวจวัดน้ำที่สามารถขยายให้ครอบคลุมเขื่อนไฟฟ้าพลังน้ำทั้งหมด 11 แห่ง ที่เปิดดำเนินการอยู่ในขณะนี้ และเพื่อการรวบรวมข้อมูลระดับน้ำทั้งพื้นที่ต้นน้ำและปลายน้ำ การไหลออกของอ่างเก็บน้ำแต่ละเขื่อนตลอดจนกำหนดการดำเนินการ นอกจากนี้ยังอาจรวมถึงข้อมูลน้ำในแม่น้ำสาขาซึ่งรวบรวมไว้อย่างครอบคลุม ในขณะที่การแบ่งปันชุดข้อมูลในอดีตสามารถช่วยสร้างเงื่อนไขก่อนหน้านี้ในลุ่มน้ำได้

อย่างไรก็ตาม สิ่งสำคัญคือต้องตระหนักว่ามีช่องว่างข้อมูลอื่นๆ อีกมากมายที่ต้องได้รับการแก้ไขในอ่างเก็บน้ำด้านล่าง ยกตัวอย่างเช่น จำเป็นที่จะต้องมีข้อมูลน้ำที่สมบูรณ์มากขึ้นเกี่ยวกับการดำเนินงานของโครงการสร้างเขื่อนในแม่น้ำสาขาที่มีผลต่อสภาวะน้ำท่วมและภัยแล้งทั้งในพื้นที่และสะสมตลอดทั้งลุ่มน้ำ สิ่งนี้ไม่ได้หมายถึงแต่เขื่อนไฟฟ้าพลังน้ำเพียงเท่านั้นแต่ยังรวมถึงแผนการชลประทานขนาดใหญ่ที่เพิ่มมากขึ้น นอกจากนี้ ยังมีความจำเป็นต้องมีการเปิดเผยข้อมูลต่อสาธารณะเกี่ยวกับผลกระทบของมาตราการบรรเทาความเสียหายที่เขื่อนไชยะบุรีที่เพิ่งสร้างเสร็จเมื่อเร็วๆนี้บนแม่น้ำสายหลักทางตอนเหนือของลาว เป็นสิ่งที่จำเป็น รวมทั้งการอพยพย้ายถิ่นของปลาและการเดินทางของตะกอน มีการริเริ่มโครงการภายใน MRC ตั้งแต่ปลายปี 2562 เพื่อศึกษาผลกระทบเหล่านี้ ในขณะที่องค์กรยังคงทำการรวบรวมข้อมูลอย่างมั่นใจแม้ว่าผลลัพธ์จะยังไม่เปิดเผยต่อสาธารณะก็ตาม การศึกษาเหล่านี้มีความจำเป็นอย่างเร่งด่วนในบริบทของ/และ ก่อนแผนการสำหรับโครงการกระแสหลักต่อไปซึ่งมี 4 โครงการที่กำลังได้รับการเสนออย่างจริงจัง การศึกษาเหล่านี้ยังสามารถช่วยอธิบายการเปลี่ยนแปลงของแม่น้ำที่ผิดปกติในรูปแบบอื่นๆ ที่เพิ่งสังเกตุได้ครั้งแรกในเดือนพฤศจิกายน 2562  และอีกหลายครั้งตั้งแต่นั้นเป็นต้นมา แม่น้ำโขงได้เปลี่ยนเป็นสีฟ้าน้ำทะเลในพื้นที่ของลาวและไทย ซึ่งโดยปกติแล้วจะเป็นสีน้ำตาลปนโคลน คณะกรรมาธิการแม่น้ำโขง ระบุว่าการสีที่เปลี่ยนนี้เกิดขึ้นจากการลดลงของปริมาณตะกอนและการเติบโตของสาหร่ายเนื่องจากการไหลของน้ำในแม่น้ำไหลต่ำ เป็นไปได้อย่างแน่นอนว่าการไหลของแม่น้ำในระดับต่ำและการเปลี่ยนแปลงของตะกอนจะเชื่อมต่อกับเขื่อนที่เพิ่งสร้างขึ้นมา

เมื่อวันที่ 13 พฤศจิกายน ปีนี้ คณะกรรมาธิการแม่น้ำโขง ได้ประกาศปรับปรุงเว็ปไซต์และ “ศูนย์รวมข้อมูล(Data Portal)” โดยมีเป้าหมายที่ระบุไว้คือ " (การ) ส่งเสริมความโปร่งใส เพิ่มการเข้าถึงข้อมูลและความรู้ที่เกี่ยวข้องกับแม่น้ำโขง" ตามข่าวประชาสัมพันธ์ของ คณะกรรมาธิการแม่น้ำโขงศูนย์รวมข้อมูลมีสิ่งพิมพ์มากกว่า 1,000 รายการโดย MRC เองและมากกว่า 10,000 ชุดข้อมูลเกี่ยวกับข้อมูลอนุกรมเวลาทางอุตุนิยมวิทยาทั้งในปัจจุบันและในอดีต แผนที่เชิงพื้นที่ แผนที่ ภาพถ่ายและชุดข้อมูลภาค ความพร้อมใช้งานของข้อมูลนี้จะเป็นทรัพยากรที่มีค่าสำหรับนักวิจัย รวมทั้งคณะกรรมาธิการแม่น้ำโขงก็เช่นกัน ในกลยุทธ์การสนับสนุนศูนย์รวมข้อมูลเน้นความสำคัญของข้อมูลดิบและการวิเคราะห์ผ่านการสร้างแบบจำลองและการพยากรณ์

ถึงกระนั้น ยังมีขั้นตอนสุดท้ายที่สำคัญที่จะต้องดำเนินการนั่นคือ การเชื่อมโยงความพร้อมใช้งานของข้อมูลน้ำที่ครอบคลุมมากขึ้นซึ่งสามารถเพิ่มความโปร่งใสในการปรับปรุงการกำกับดูแลน้ำข้ามแดนที่มีส่วนร่วมและรับผิดชอบต่อชุมชนที่อาศัยอยู่บนฝั่งแม่น้ำ ภาคประชาสังคมและสาธารณชนในวงกว้าง สิ่งนี้นำไปประยุกต์ใช้ในลุ่มน้ำตอนล่าง ยกตัวอย่างเช่น การปรึกษาหารืออย่างต่อเนื่องเกี่ยวกับเขื่อนหลักที่เสนอและเกี่ยวข้องกับการประกาศของจีนที่จะเพิ่มการแบ่งปันข้อมูลที่ยังไม่ได้เชื่อมโยงอย่างชัดเจนกับความมุ่งมั่นที่จะปรับปรุงความรับผิดชอบของโรงไฟฟ้าพลังน้ำแบบขั้นบันไดในแม่น้ำหลานซางไปยังประเทศปลายน้ำและชุมชนที่ตั้งอยู่ริมแม่น้ำ

สิ่งสำคัญคือต้องตระหนักว่าประเภทของความรู้ทางวิทยาศาสตร์ที่คิดค้นโดยคณะกรรมาธิการแม่น้ำโขงและนักวิจัยทางวิทยาศาสตร์เป็นเพียงรูปแบบเดียวของความรู้ที่จำเป็นสำหรับการพัฒนาที่ครอบคลุมและยั่งยืน การตั้งอยู่บนความรู้ของชุมชน เช่น งานวิจัย “ไทบ้าน” ซึ่งเป็นงานวิจัยที่นำโดยชุมชนตลอดจนรูปแบบความรู้ทางการเมืองและการปฏิบัติทุกเรื่องเพื่อให้ความรู้สามารถ “นำไปปฏิบัติได้” การเติบโตล่าสุดของ “การร่วมผลิตความรู้” หรือ “การวิจัยแบบสหวิทยาการ” สะท้อนให้เห็นถึงการยอมรับถึงการตัดเชื่อมต่อระหว่างความรู้ทางวิทยาศาสตร์ก่อนหน้าและผลกระทบต่อการกำกับดูแลสิ่งแวดล้อมที่ดีขึ้น การเรียกร้องให้มีการยอมรับมากขึ้นถึงความชอบธรรม คุณค่า จุดแข็งและข้อจำกัดของการผลิตความรู้ที่กว้างขึ้นและเพื่อความรับผิดชอบร่วมกัน ในบริบทของการข้ามพรมแดนแม่น้ำหลานซาง-แม่โขง สิ่งสำคัญคือ ผู้ที่ผลิตองค์ความรู้ที่หลากหลายต้องเป็นเครือข่าย มีการติดต่อสื่อสารและการปรึกษาหารือข้ามพรมแดน

การตั้งอยู่บนหลักการของการแบ่งปันความรู้และการสร้างสรรค์ร่วมกัน มีความจำเป็นที่จะต้องมีระบอบการปกครองที่อิงกฎเกณฑ์ที่ชัดเจนและเป็นสถาบันสำหรับลุ่มน้ำหลานซาง – แม่โขง ทั้งหมดซึ่งอยู่บนพื้นฐานของการสนทนาที่มีความหมาย ความสัมพันธ์และความไว้วางใจระหว่างรัฐกับชุมชนและภาคประชาสังคม อนุสัญญา Watercourses ของสหประชาชาติระบุหลักการและแนวปฏิบัติที่ดีสำหรับสิ่งนี้ รวมถึงวิธีการจัดการความซับซ้อนของความรู้และความไม่แน่นอนที่เกี่ยวข้องกับหลักการ “ห้ามทำให้เกิดอันตราย” และ “ข้อควรระวัง” โดยมุ่งเน้นไปที่การกำหนดแนวทางตามกฎเกณฑ์ในระดับประเทศและระดับข้ามแดนอันเป็นกลไกสำคัญที่ทำให้เกิดความรับผิดชอบและยังอยู่ในวิสัยทัศน์ที่เป็นทางเลือกสำหรับลุ่มแม่น้ำโขง-หลานซางที่จะสามารถสำรวจและพิจารณาอย่างจริงจังอีกด้วย

———

[1] ผู้อำนวยการศูนย์เชี่ยวชาญการเมืองเพื่อการพัฒนาสังคม ศูนย์ศึกษาการพัฒนาสังคม คณะรัฐศาสตร์จุฬาลงกรณ์มหาวิทยาลัย Email: Carl.Chulalongkorn@gmail.com

บทความนี้เผยแพร่ครั้งแรกบนเว็บไซต์ Heinrich-Böll-Stiftung Southeast Asia เมื่อวันที่ 27 พฤศจิกายน 2020 สามารถเข้าไปดูได้ที่ลิงค์ (link) นี้

CRITICAL NATURE: Beyond Water Data Sharing, Mekong-Lancang River Needs Accountable Water Governance

by Carl Middleton*

[Thai version available here]

The Mekong River seen from Vientiane, Laos (picture from Heinrich-Böll-Stiftung Southeast Asia).

The Mekong River seen from Vientiane, Laos (picture from Heinrich-Böll-Stiftung Southeast Asia).

In 2019, and again in 2020, the Mekong River – known as the Lancang River in China - has experienced low flows that has caused hardship for millions of people whose livelihoods depend on it.

An intense and often divisive regional debate has ensued about whether low flows are due to drought or the operation of large dams that have been progressively built across the basin since the early 1990s. Particular attention has been paid to the cascade of eleven hydropower dams on the mainstream in China, given the lack of transparency over the projects’ operation and reservoir water storage status.

In April 2020, the research consultancy Eyes on the Earth published a model of the natural (pre-dam) flow of the Lancang River to then predict the impact of the dams downstream in Northern Thailand. Given the absence of actual measurements in the public domain from gauging stations in China, the statistical model used satellite data to create a ‘wetness index’ to estimate the amount of water in the catchment, and then related this to monthly measurements of water levels at the gauging station in Chiang Saen in Northern Thailand. Overall, the study showed how since dams in the Lancang cascade began to be commissioned in the early 1990s there had been a decrease in wet season river levels and an increase in dry season levels, and more irregular and rapid fluctuations in water levels in both wet and dry seasons. These changes became especially pronounced since 2012 when the 5,850 MW Nouzhadu dam began reservoir filling, given that its reservoir is considerably larger than the preceding four projects combined.

While these conclusions have also been reached by previous scientific studies, the Eyes on Earth report gained significant media attention in regional and international outlets, as it was drawn upon by several civil society groups as well as representatives of the US Government to claim that it evidenced that China was responsible for the severity of the 2019-2020 drought and had “turned off the tap” or was “hoarding water”. These statements led in turn to rebuttals from China’s diplomats and researchers.

Such significant claims led to careful scrutiny of the Eyes on Earth report, including by the Mekong River Commission, AMPERES, and academics, that flagged some limitations including that: the report provides results in terms of water level, but this cannot be considered equivalent to water volumes; it didn’t demonstrate that China could store all of the water in the rainy season, hence being capable of fully withholding the river’s flow causing drought in the downstream; and it would have been better if the study had been peer reviewed before publication. Moreover, researchers at AMPERES concluded that the representation of the Eyes on Earth report in the public debate often went beyond its actual findings. In July 2020, researchers from Tsinghua University, a lead research institution in China, added to the debate with a study that argued the region had been experiencing drought. Again, AMPERES reviewing the study found that it too required further clarification and that the study’s conclusions on the benefits of the dam cascade in China to alleviate downstream drought conditions were potentially misleading.  

Overall, all existing studies on the impacts of China’s dam cascade on downstream countries are currently based on incomplete data due to a lack of access to already existing data. Moreover, the 2019 and 2020 droughts have occurred at a time of intensified geopolitics between the US and China in Southeast Asia and globally. In September 2020, the Mekong US Partnership was launched that has sought to deepen the relationship between downstream countries and the United States, and that has viewed China’s control of water resources in the upper basin with concern. Yet, the politicization of research – where the limitations of studies are downplayed and the results transformed into simplified narratives – risks undermining the credibility of scientific evidence that could inform processes of transboundary water governance and decision making.

In the Mekong-Lancang basin, transboundary water governance is complex given the diverse range of state and non-state actors’ interests. Two key intergovernmental institutions that structure state-to-state transboundary water governance are the Mekong River Commission (MRC) and the Lancang-Mekong Cooperation (LMC). The MRC is a treaty-based organization founded in 1995 between Cambodia, Laos, Thailand and Vietnam, with China and Myanmar as dialogue partners. The LMC was launched in March 2016 and includes all six states of the Mekong-Lancang basin, with a key role of China as co-chair and financier, and with water resources management as one of five priority areas. The MRC and LMC simultaneously cooperate and contest over their mandate, role and influence in the Mekong- Lancang River basin. Regarding the causes of the 2019 low flows and drought, in December 2019 the LMC and MRC committed to a joint study although the status of this study is not publicly announced.

Over the past couple of years, longstanding calls from downstream states, civil society and communities towards China for water data sharing have intensified. Since 1996, China had only shared rainy season data (from June to October), and occasionally dry season data at times ‘of emergency’ that according to the academic Stuart Biba was an ad hoc measure to deescalate criticism. Moreover, released data was not complete enough to conclusively determine the role that upstream dams had played in low river flows. In the context of the intense criticism during 2020 discussed above, on 22 October 2020 the MRC announced that China had agreed to share all-year around data twice per day for rainfall and river level from two monitoring stations at Manwan and Jinghong.

The new arrangement for state-to-state water data sharing is an important breakthrough, including given that China has deepened its cooperation with the MRC to share data rather than insist on sharing data via the LMC. However, in terms of water data sharing there is more to be done to understand the situation upstream in China. In particular, the number of monitoring stations could be expanded to cover all eleven hydropower dams now in operation and to include data on upstream and downstream water levels and flows for each dam’s reservoir as well as its operation schedule. It could also include tributary river water data, which is already extensively collected, while sharing historical data sets could help establish previous conditions in the basin.

Yet, it is important to recognize that there are numerous other data gaps that need to be addressed in the lower basin. For example, more complete water data on the operation of tributary projects is needed that influence flood and drought conditions both locally and cumulatively throughout the entire basin. This includes not only hydropower dams, but also a growing number of large irrigation schemes. The public release of data on the impact of mitigation measures at the recently completed Xayaburi Dam on the river’s mainstream in Northern Laos is also needed, including on migratory fish and sediment transportation. A project has been initiated within the MRC since late 2019 to study these impacts, while the company also certainly collects data, although results are not yet publicly available. These studies are urgently needed in the context of – and before - plans for further mainstream projects, four of which are currently being actively proposed. These studies could also help explain other unusual river changes recently observed given that first in November 2019, and several times since, the Mekong River has turned aqua-marine blue in areas of Laos and Thailand where usually it is a muddy brown. The MRC has stated that the color change is due to the drop in sediment load and subsequent algae growth due to low river flows. It is certainly possible that low river flows and sediment changes connect to the dams recently constructed.

On 13 November this year, the MRC announced its revamped website and ‘data portal’, with the stated goal of “promot[ing] transparency and increase[ing] access to Mekong related information and knowledge.” According to the MRC’s press release the data portal contains more than 1,000 publications by the MRC, and more than 10,000 datasets on current and historical hydrometeorological and climate time-series data, spatial maps, atlases, photographs, and sector datasets. The availability of this data will be a valuable resource for researchers. The MRC too in its underpinning strategy for the data portal emphasizes the importance of raw data and its analysis through modeling and forecasting.

Yet, there is a crucial final step to make, which is connecting more comprehensive water data availability that can increase transparency to improved transboundary water governance that is participatory and accountable to riparian communities, civil society and the wider public. This applies in the lower basin, for example within the ongoing consultations on proposed mainstream dams, and also in relation to China’s announcement to increase data sharing that is not yet explicitly connected to a commitment to improved accountability of the Lancang hydropower cascade to downstream countries and riverside communities.

It is important to recognize that the type of scientific knowledge generated by the MRC and scientific researchers is only one form of knowledge necessary for inclusive and sustainable development. Situated community-knowledge such as ‘Thai Bann’ research, civil society-led research, as well as political and practical forms of knowledge, all matter for knowledge to be “actionable”. The recent growth in “co-produced knowledge” or “transdisciplinary research” reflects acknowledges this recognition of the earlier disconnect between scientific knowledge and its impact on improved environmental governance.  It calls for greater recognition of the legitimacy, value, strengths and limitations of a broader range of knowledge production, and for its mutual accountability. In the context of the transboundary Mekong-Lancang River, it is also important that those producing diverse knowledge are networked, communicating and deliberating across borders.

Founded on knowledge sharing and co-creation, there is a need for a clear and institutionalized rules-based regime for the entire Lancang-Mekong basin that is based on meaningful dialogue, reciprocity and trust both between states and with communities and civil society. The UN Watercourses Convention outlines good principles and practices for this, including on how to manage knowledge complexity and related uncertainty drawing on the “do no harm” and “precautionary” principles. Focusing on establishing a rules-based approach at the national and transboundary scale is a vital mechanism through which accountability can occur, and also within which alternative visions for the Mekong-Lancang basin can be explored and seriously considered.

———

*Director, Center of Excellence in Resource Politics for Social Development, Center for Social Development Studies, Faculty of Political Science, Chulalongkorn University. Email: Carl.Chulalongkorn@gmail.com

This article was originally published on the Heinrich-Böll-Stiftung Southeast Asia website on 27 November 2020 at this link.

JOURNAL ARTICLE: Reciprocity in practice: the hydropolitics of equitable and reasonable utilization in the Lancang-Mekong basin

0001.jpg

Publication date: 04 October 2020

Publication: International Environmental Agreements: Politics, Law and Economics

Authors: Carl Middleton & David J. Devlaeminck

Abstract:

Equitable and reasonable utilization (ERU), the cornerstone of international water law, recognizes the rights of states to utilize shared water resources. However, there is ambiguity in ERU’s application, and upstream states often perceive it as against their interests. Recent research highlights the important role reciprocity plays in international water law, yet how reciprocity is practiced in transboundary water governance remains poorly understood. Combining literature on international law, hydropolitics and international relations, this article conceptualizes ‘reciprocity in practice’ for international watercourses as interconnected legal, social and political processes by which state and non-state actors negotiate ERU and distribute benefits and harms. We pay particular attention to power relations and perceptions of fairness that influence the form and (dis)continuity of reciprocity. We demonstrate our approach through an analysis of evolving legal regimes and issues of navigation, hydropower, flood and drought management, and economic regionalization in the Lancang-Mekong basin, focusing on relations between China and downstream states. We demonstrate how multiple forms of reciprocity occur simultaneously across issues that are often analyzed individually, complicating common narratives of China’s unilateralism. We show, however, that practiced positive reciprocity is weak and exclusive, generating distrust and resistance from those excluded or who experience harms. Overall, we suggest that processes of ‘reciprocity in practice’ are at the heart of meaningful negotiation, institutionalization and practice of ERU, and that, as a model of water allocation, ERU should be contextualized to wider process of allocation of benefits and harms that include but go beyond water, and in which power relations fundamentally matter.

Keywords: UN Watercourses Convention, Mekong River Commission, Lancang-Mekong Cooperation, Lancang dam cascade, Equitable and reasonable use

Read the abstract in Chinese (Mandarin) here.

See the article here.

Citation: Middleton, C., and Devlaeminck, D.J. (2020) Reciprocity in practice: the hydropolitics of equitable and reasonable utilization in the Lancang-Mekong basin. Int Environ Agreements.  https://doi.org/10.1007/s10784-020-09511-6

CRITICAL NATURE: Are China’s dams on the Mekong causing downstream drought? The importance of scientific debate

by Marko Kallio* and Amy Fallon**

Xiaowan Dam in Nanjian County, Yunnan Province, Southwest China. Photo Credit: Guillaume Lacombe/Cirad

Xiaowan Dam in Nanjian County, Yunnan Province, Southwest China. Photo Credit: Guillaume Lacombe/Cirad

A recent report by Eyes on Earth (EoE)[i] highlighted the critical issue of China’s hydropower development and dam operation on the Lancang (upper Mekong) River and connected it to the ongoing drought in the lower Mekong basin. The report sparked numerous articles in regional and international news outlets[ii],[iii],[iv],[v], think tanks[vi], and online public discussion[vii]. Independent research groups and the Mekong River Commission (MRC) have questioned the EoE report’s methodology and its conclusions[viii],[ix], and called for increased cooperation between MRC member states and China.

Here, we outline some key scientific issues regarding the report and the assertions drawn from it, adding our own independent analysis of the EoE study, and suggest a constructive path forward based on the importance of data-sharing, rigorous peer review, and evidence-based democratized decision-making.

Evaluating the EoE report and considering its claims

The EoE report presents a statistical model to predict water level at the Chiang Saen monitoring station in Northern Thailand using a remotely sensed wetness index. It concludes that the 2019 lower Mekong drought was largely due to water being stored behind dams on the Lancang River in China, rather than an absolute shortage of water. Additional commentary on the report has gone further, and statements were made that China “entirely prevented the annual monsoon-driven rise in river level”.[vi]

The EoE report and subsequent commentary reveal key issues about the role of scientific research in sensitive and at times heated public discussions, such as the hydrological impacts of upstream dams on the lower Mekong River. That a public discussion is taking place on this crucial issue is positive, as there few forums to meaningfully discuss the impacts and ways forward, particularly for communities affected directly. But caution is also required on how science is drawn upon as a form of knowledge within such debates.

The commentary from the Stimson Center based on the EoE report does highlight a key issue that should be of public concern in downstream countries: the generation capacity of China’s upstream Mekong dams currently far exceeds China’s electricity demand[x], indicating there was likely potential for the release of water downstream to where it was needed during the drought, without undermining China’s domestic electricity security.  Yet, there are also several shortcomings in the EoE report itself and therefore the subsequent interpretation of it also hold policy implications.

A key limitation of the EoE report is that the authors’ analysis was based on water level, rather than water volume, giving only a partial picture of the situation on the Lancang River. This led to exaggerated claims that went beyond what could be justifiably concluded by the study – that the dam cascade withheld an entire monsoon season’s worth of rainfall. This was predominantly due to incomplete data access; the authors of the report had only obtained water level data from the MRC[viii],[ix], which limited the analysis to a simplified methodology based on this data and satellite imagery. The persistent data scarcity in the region significantly reduces the comprehensiveness of hydrological studies.

Such issues highlight the importance of acknowledging the study’s limitations, which is common practice in published scientific studies and helps avoid black-and-white conclusions, as seen in this case[ii],[vi]. The study’s methodological sturdiness also comes under question given the apparent lack of a rigorous peer-review process.  It is widely recognised that modelling reservoir operations is a difficult task in the absence of detailed data. During a recent panel discussion [vii] online with one of the report’s authors, peer-review of the method[xi] was mentioned, but it is difficult to substantiate such claims without a transparent scientific peer-review process (i.e. through publication in a scientific journal, or corroboration by multiple research groups) of the methodology for this particular purpose[xii].

A case for plural science

Curious about the conclusions reached in the EoE report and recognizing the high stakes within the subsequent public discussion, we wanted to critically scrutinize the report’s validity as would be conducted in an independent peer review process. Here, we briefly present our independent check to test the conclusion on Chinese dam operation – a discussion which is lacking in the report and related documents – and to demonstrate the usefulness of a wide range of model structures and input data.

The EoE report provides results in terms of water level, but this cannot be turned into water volume without a rating curve[xiii] at Chiang Saen. We therefore estimated runoff produced upstream of the Jinghong Dam – the last in the Lancang cascade – using a total of 26 freely and openly available runoff datasets[xiv]. Drawing on recent studies[xv], we estimated the Lancang cascade’s active storage capacity to be 25.6-27.1 km3.

Importantly, only two of the 26 datasets predict (on average) smaller runoff volume produced during the wet season than the Lancang cascade active storage capacity (Figure 1A).  The ensemble mean[xvi] of our estimates is 43.8 (+3.7/-3.6) km3, suggesting that the cascade can store 54-68% of the runoff produced in an average year. Figure 1B shows the cumulative sum of runoff produced in an average wet season. We can infer from this figure – assuming that all the active storage capacity was available at the start of the wet season and all incoming water was stored – that the cascade would be entirely filled sometime in July or August.

Figure 1) 26 independent estimates and the ensemble mean of A) the range of runoff produced upstream of Jinghong dam during rainy season, and B) the cumulative runoff produced during wet season. The active storage capacity of the Lancang cascade is …

Figure 1) 26 independent estimates and the ensemble mean of A) the range of runoff produced upstream of Jinghong dam during rainy season, and B) the cumulative runoff produced during wet season. The active storage capacity of the Lancang cascade is shown. The ensemble mean is highlighted. (Credit: the authors)

We consider our results robust: the annual runoff estimated by the ensemble mean, 53.2 (+5.1/-4.9) km3, is in line with Räsänen et al.[xvii], who estimate the annual inflow to Jinghong as 58 km3 (1840 m3 s-1). We also find good correspondence when comparing to the observed streamflow at Chiang Saen during a natural flow regime (1960-1990). Our method estimates wet season runoff at Chiang Saen as 65.9 (+5.8/-5.0) km3, and annual runoff 79.6 (+7.3/-6.9) km3, while observed streamflow is 64.7 (+3.9/-4.0) km3 and 85.5 (+4.0/-4.5) km3, respectively.

By changing the research question and designing a methodology to address this question under data scarcity, we arrive at an opposite conclusion from the discussed reports – it seems likely that the upper Mekong Basin experienced drought-like conditions. If we accept the presented evidence showing the reservoirs at a high water level at the start of the 2019 wet season[ii],[vii], the Lancang cascade in China would have been overwhelmed by the inflowing water of an average wet season and would not have been able to prevent the flood pulse at Chiang Saen.

It should be noted that our approach, like the discussed EoE report, arises from incomplete data availability, and as a simple bucket model does not consider dam operations, transmission losses or water withdrawals. To further the debate, we make our code available for public review in GitHub[xviii]. However, an ensemble approach, like the one presented here, can facilitate discussion about modelling beyond questions looking for simple conclusions, and acknowledging multiple ways to overcome challenges[xix] inherent in hydrological modelling.

What can we do to address these shortfalls?

The issues we have highlighted here demonstrate the need for a constructive path forward, for which we propose four suggestions. First, open data-sharing is critical for comprehensive hydrological modelling of the Mekong. Without this, it is impossible to gain a true understanding of what is occurring across the basin, and opens the process up for unconstructive politicization and the closing of potential channels of dialogue[xx]. Unfortunately, China’s persistent lack of data-sharing with downstream countries, despite many assurances and invitations to share data[xxi], means that at the present time only such incomplete assessments of the impact of the upper dam cascade are possible. Thus, regardless of the shortcomings of research findings, China’s lack of transparency has brought about assumptions of dishonesty regarding its lack of release of water to downstream Mekong countries during the 2019 drought. In terms of data sharing, the ball is firmly in China’s court to act upon it.

Second, we emphasise the need for objective, credible science, particularly in such complex settings where there is a diverse range of perspectives, knowledge and agendas. From a hydrological modelling perspective, this can be achieved using a range of different model structures and assumptions which account for a wide range of plausible outcomes. This arises from acknowledging that there is no such thing as a ‘perfect’ model, and therefore uncertainty needs to be clearly communicated. Credibility of modelling can only be verified through a rigorous peer-review process and with the use of comprehensive model evaluation frameworks. Such frameworks acknowledge modelling as a social process[xxii], not merely a technical one.

Following from this is the need for a plurality of perspectives both within the scientific community across disciplines, and across society, as water resource sharing in the Mekong is debated. For example, increased inclusion of Chinese researchers would be highly beneficial, not just from a knowledge-perspective in ensuring rigorous debate, but also a diplomatic one to ensure that there is broad agreement – and constructive contestation - on how the analysis unfolds. Furthermore, when the intrinsically plural nature of knowledge is recognised, scientific advice can become more robust and democratically accountable[xxiii]. For this, we must also ensure research is inclusive of both physical and social sciences, and community knowledge.

Finally, research should be used as a catalyst for science-based policy discussions in the public domain, rather than the means toward a definitive answer that shuts down conversation. Despite their shortfalls, the EoE and Stimson reports have certainly achieved this. We, however, caution the oversimplification of findings in facilitating such discussion, to not undermine the credibility of science within public discourse.

Overall, we hope to see dialogue that is not one-way from ‘experts’ to the public, but rather an iterative process that encourages democratic debate. This requires a certain level of humility, both on the part of scientists and policymakers.

Concluding Remarks

The report from EoE and associated public discussion have connected China’s cascade of dams to the ongoing drought in the Mekong Region, and highlighted the role - and responsibilities - of scientists in untangling the complex web of environmental issues along the Mekong River.

As our analysis and commentary of others[viii],[ix] have demonstrated, there are weaknesses in the methodology used that undermine the claims that China completely held back the 2019 wet season flow. Our analysis suggests that it is improbable that China’s dam cascade can store an entire wet season’s worth of rainfall, and subsequently be the primary cause of the 2019 drought. But we agree that China could have alleviated the drought conditions by releasing more water from the reservoirs, even as it would be at China’s cost of sacrificing part of its underutilized electricity generation potential.

We therefore suggest a constructive path forward: (1) increase public availability of data which, (2) informs a wide range of rigorously-debated scientific studies across disciplines – an example of which we have provided here. (3) The subsequent scientific debates should be accountable to and informed by the needs of multiple groups across society, including communities and states. (4) Encourage and support evidence-based and democratized decision-making. Only through this can we hope to achieve cooperative and equitable sharing of water resources along the Mekong River.

Acknowledgment

We would like to thank Rajesh Daniel and Carl Middleton for their helpful comments and editorial review of this article.

—-

[i] Basist, A., and C. Williams. 2020. ‘Monitoring the Quantity of Water Flowing Through the Upper Mekong Basin Under Natural (Unimpeded) Conditions’. Sustainable Infrastructure Partnership, Bangkok.

[ii] Eyler, B. 2020. ‘Science Shows Chinese Dams Are Devastating the Mekong’. Foreign Policy (blog). 22 April 2020. https://foreignpolicy.com/2020/04/22/science-shows-chinese-dams-devastating-mekong-river/.

[iii] Beech, H. 2020. ‘China Limited the Mekong’s Flow. Other Countries Suffered a Drought.’ The New York Times, 13 April 2020, sec. World. https://www.nytimes.com/2020/04/13/world/asia/china-mekong-drought.html.

[iv] Reuters. 2020a. ‘Chinese Dams Held Back Mekong Waters during Drought, Study Finds’, 13 April 2020. https://www.reuters.com/article/us-mekong-river-idUSKCN21V0U7.

[v] Reuters. 2020b. ‘Mekong River Groups Urge China to Show Transparency after Dam Report’, 15 April 2020. https://www.reuters.com/article/us-mekong-river-idUSKCN21X1LG.

[vi] Eyler, B. and Weatherby, C. 2020. ‘New Evidence: How China Turned off the Tap on the Mekong River’. The Stimson Center. https://www.stimson.org/2020/new-evidence-how-china-turned-off-the-mekong-tap/.

[vii]  Foreign Correspondent’s Club Thailand. 2020. ‘Mekong Update: New Evidence of China’s Dam Impacts, and Why It Matters | FCCThai’. 23 April 2020. https://www.fccthai.com/events/mekong-update-new-evidence-of-chinas-dam-impacts-and-why-it-matters/. Available at: https://www.youtube.com/watch?v=5YXLz4V-JbY

[viii] Ketelsen, T., J. Sawdon, and T. A. Räsänen. 2020. ‘Monitoring the Quantity of Water Flowing through the Upper Mekong Basin under Natural (Unimpeded) Conditions - Rapid Review’. Ho Chi Minh City, AMPERES. https://www.amperes.com.au/s/AMPERES-Review_Basist-et-al_Lancang-flows-19-April-2020.pdf.

[ix] Mekong River Commission. 2020. ‘Understanding the Mekong River’s Hydrological Conditions: A Brief Commentary Note on the “Monitoring the Quantity of Water Flowing the Upper Mekong Basin Under Natural (Unimpeded) Conditions” by Alan Basist and Claude Williams (2020)’. Mekong River Commission.

[x] Magee, D. and Hennig, T. 2017.  ‘Hydropower Boom in China and along Asia’s Rivers Outpaces Regional Electricity Demand’. The Third Pole. https://www.thethirdpole.net/en/2017/04/28/hydropower-boom-in-china-and-along-asias-rivers-outpaces-regional-electricity-demand/.

[xi] The peer-review likely refers to: Basist, A., Williams, C., Ross, T.F., Menne, M.J., Grody, N., Ferraro, R., Shen, S. and Chang, A.T.C. 2001. ‘Using the Special Sensor Microwave Imager to Monitor Surface Wetness’. Journal of Hydrometeorology 2 (3): 297–308.

[xii] The purpose of monitoring dam operations.

[xiii] A rating curve is a mathematical model (equation) which describes the relationship between water level and discharge.

[xiv] We used 24 different combinations of Global Hydrological Models and reanalysis climate forcing datasets available from the Intersectoral Impact Model Intercomparison Project. These are generally uncalibrated model runs, so we complemented them with two global runoff products optimized with streamflow records: LORA and GRUN. For ISIMIP data, refer to Gosling, Simon, Hannes Müller Schmied, Richard Betts, Jinfeng Chang, Philippe Ciais, Rutger Dankers, Petra Döll, et al. 2017. ‘ISIMIP2a Simulation Data from Water (Global) Sector’. GFZ Data Services. https://doi.org/10.5880/pik.2017.010, for LORA refer to Hobeichi, Sanaa, Gab Abramowitz, Jason Evans, and Hylke E. Beck. 2019. ‘Linear Optimal Runoff Aggregate (LORA): A Global Gridded Synthesis Runoff Product’. Hydrology and Earth System Sciences 23 (2): 851–70. https://doi.org/10.5194/hess-23-851-2019,  and for GRUN, refer to Ghiggi, Gionata, Vincent Humphrey, Sonia I. Seneviratne, and Lukas Gudmundsson. 2019. ‘GRUN: An Observations-Based Global Gridded Runoff Dataset from 1902 to 2014’. Earth System Science Data, March, 1–32. https://doi.org/10.5194/essd-11-1655-2019.    

[xv] Total storage capacity 46.4 km3 was obtained from the WLE Greater Mekong Dam Observatory. We estimated the active storage by computing the ratio of total-to-active storage ratio from available values in Table 1 in Räsänen et al. (2017), and multiplying the total storage with the ratio 0.584 for higher, and 0.551 for lower estimate. Active storage capacity refers to the volume which is available for dam operators to work with. Dam data from Mekong Region Futures Institute. 2020. ‘Dataset on the Dams of the Greater Mekong’. Mekong Region Futures Institute, Bangkok. Active storage ratio from Räsänen, Timo A., Paradis Someth, Hannu Lauri, Jorma Koponen, Juha Sarkkula, and Matti Kummu. 2017. ‘Observed River Discharge Changes Due to Hydropower Operations in the Upper Mekong Basin’. Journal of Hydrology 545 (February): 28–41. https://doi.org/10.1016/j.jhydrol.2016.12.023.

[xvi] An ensemble mean is the average of a collection of many estimates. Here it refers to the average value of  combining all of the 26 individual estimates.

[xvii] Räsänen, Timo A., Jorma Koponen, Hannu Lauri, and Matti Kummu. 2012. ‘Downstream Hydrological Impacts of Hydropower Development in the Upper Mekong Basin’. Water Resources Management 26 (12): 3495–3513. https://doi.org/10.1007/s11269-012-0087-0.

[xviii] https://github.com/mkkallio/Upper_Mekong_capacity_check

[xix] See e.g. Seibert, Jan, and H. J. (Ilja) van Meerveld. 2016. ‘Hydrological Change Modeling: Challenges and Opportunities’. Hydrological Processes 30 (26): 4966–71. https://doi.org/10.1002/hyp.10999, Fatichi, Simone, Enrique R. Vivoni, Fred L. Ogden, Valeriy Y. Ivanov, Benjamin Mirus, David Gochis, Charles W. Downer, et al. 2016. ‘An Overview of Current Applications, Challenges, and Future Trends in Distributed Process-Based Models in Hydrology’. Journal of Hydrology 537 (June): 45–60. https://doi.org/10.1016/j.jhydrol.2016.03.026 or Blair, P, and W Buytaert. 2016. ‘Socio-Hydrological Modelling: A Review Asking “Why, What and How?”’ Hydrol. Earth Syst. Sci 20: 443–478. https://doi.org/10.5194/hess-20-443-2016.

[xx] Pielke Jr., Roger A. 2007. ‘The Honest Broker: Making Sense of Science in Policy and Politics’. Cambridge Core. Cambridge University Press. April 2007. https://doi.org/10.1017/CBO9780511818110.

[xxi] See e.g. Biba, Sebastian. 2018. China’s Hydro-Politics in the Mekong : Conflict and Cooperation in Light of Securitization Theory. Routledge. https://doi.org/10.4324/9781315148663.

[xxii] See e.g. Hamilton, Serena H., Baihua Fu, Joseph H. A. Guillaume, Jennifer Badham, Sondoss Elsawah, Patricia Gober, Randall J. Hunt, et al. 2019. ‘A Framework for Characterising and Evaluating the Effectiveness of Environmental Modelling’. Environmental Modelling & Software 118 (August): 83–98. https://doi.org/10.1016/j.envsoft.2019.04.008.

[xxiii] Stirling, Andy. 2010. ‘Keep It Complex’. Nature 468 (7327): 1029–31. https://doi.org/10.1038/4681029a.

—-

Author Bio:

*Marko Kallio is working at Aalto University doing multidisciplinary research about water scarcity estimation in data scarce areas with a background in environmental engineering (water management, B.Sc.) and geoinformatics (spatial analysis, cartography, M.Sc.). He has been working in the Mekong Region in various projects as a modeller in hydrology and renewable energy, both as a consultant and as a researcher. Drawing from his experience in hydrological modelling and research, he has come to the conclusion that hydrological modelling is hard. This realization led to one of Marko’s main research interests – bridging the gap between modellers and consumers of the outputs of their models. For the past few years, he has developed intuitive methods for utilizing freely and openly available hydrological information in areas where data is scarce – like the Mekong Region. Marko has frequently visited the area in the past years and hopes his research can help in ensuring a sustainable future for the whole region. (Email: marko.k.kallio@aalto.fi).

**Amy Fallon is a researcher at Aalto University’s Water and Development Research Group. She has a BSc. in Environmental Sciences and an MSc. in Water Security and International Development. Her doctoral thesis focuses on resilience-based approaches to water governance in dynamic river basins undergoing significant social and ecological transformations. Using case studies from South Africa and Cambodia, her research highlights the importance of considering non-linear dynamics and uncertainty, as well as the role of politics and power, in decision-making processes. Her most recent work on Cambodia’s Tonle Sap Lake uses critical institutionalism to take a more critical perspective on resilience, focusing on the question ‘resilience for whom?’. Amy is interested in environmental justice, and the use of science to advocate for the most marginalised groups of society who are frequently the most impacted by environmental issues. (Email: amy.fallon@aalto.fi).

ธรรมชาติเชิงวิพากษ์: การจัดการภัยแล้งและการเปลี่ยนแปลงสภาพภูมิอากาศในแม่น้ำล้านช้าง-แม่โขง โดยแนวทางใหม่บนพื้นฐานธรรมชาติ

เรื่องโดย คาร์ล มิดเดิลตัน*

[English version available here]

MEKONG RIVER (c) CARL MIDDLETON

MEKONG RIVER (c) CARL MIDDLETON

ปัจจุบันภูมิภาคลุ่มแม่น้ำโขงกำลังเผชิญกับภัยแล้งอย่างรุนแรง แม้ว่าเหลืออีกเพียง 3 เดือนจะเข้าสู่ฤดูฝนแต่ระดับน้ำในลุ่มแม่น้ำล้านช้าง-แม่โขงกลับลดระดับลงต่ำจนสันดอนทรายและโขดหินโผล่ออกมาอย่างเห็นได้ชัดเจนตลอดตามแนวแม่น้ำ ภัยแล้งได้ทำให้เกิดผลกระทบและความเสี่ยงต่อระบบนิเวศ การประมงและการเกษตร ความมั่นคงทางอาหาร วิถีการดำเนินชีวิตและแม้แต่การจัดหาน้ำเพื่อการอุปโภคบริโภค สำหรับผู้คนนับล้านที่วิถีชีวิตต้องพึ่งพาทรัพยากรจากแม่น้ำนั้นภัยแล้งคือมหันตภัยที่ก่อให้เกิดความยากลำบากในชีวิตอย่างรุนแรงผนวกกับการระบาดของเชื้อไวรัสโควิด-19 ที่กำลังเกิดขึ้นอยู่นี้ทำให้เพิ่มความท้าทายในการดำเนินชีวิตของพวกเขามากขึ้น

คลิ๊กที่นี่เพื่อดาวน์โหลดเอกสารฉบับเต็มในรูปแบบ PDF

*สังกัด: ศูนย์เชี่ยวชาญเฉพาะทางด้านการเมืองทรัพยากรเพื่อการพัฒนาสังคม, ศูนย์ศึกษาเพื่อการพัฒนาสังคม คณะรัฐศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

CRITICAL NATURE: Addressing Drought and Climate Change on the Lancang-Mekong River Needs New and Nature-based Solutions

By Carl Middleton[i]

[Thai version available here]

Mekong River Carl Middleton

Mekong River Carl Middleton

Introduction

The Mekong Region is currently facing a serious drought. Despite there being possibly three months until the next rainy season, the Lancang-Mekong River is already extremely low, with sand bars and rocky outcrops exposed along many stretches of the river. The drought places at risk ecosystems, fishing and farming livelihoods, wider food security, and even drinking water supply. For the millions whose livelihoods depend upon the river’s resources, the drought is creating severe hardship - compounded now further by the COVID-19 pandemic. 

The current drought is in fact the continuation of last year’s drought, which was already the worst in living memory.[ii] The delayed monsoon finally arrived in July, but then finished early and failed to fully replenish water sources. The drought’s intensity is further amplified by the El Niño weather pattern, which has raised temperatures and rates of evapotranspiration.[iii] The extent to which climate change is nowadays acting upon the basin is also an increasingly debated question[iv], and the subject of a growing number of studies.[v]

It has also been vigorously debated whether large dam infrastructure in the basin has exacerbated the impact of the drought, or could have been operated differently to better mitigate its impacts. A particular focus has been on the upstream dams in China, where eleven projects have been progressively built on the Lancang (upper-Mekong) River mainstream since the early 1990s.  This is because a significant proportion of the river’s dry-season flow originates from China, from the glacial melt of the river’s headwaters in the Tibetan Plateau, and more recently due to the significant reservoir storage now in place.

As the impacts of climate change deepen, severe drought threatens to become a part of the ‘new normal.’ The challenge of equitably ensuring water, food and energy security for all underscores the importance of improving - and rethinking - water governance and drought adaptation in the basin in the context of climate change.

Anticipated impacts of climate change

The Lancang-Mekong River is one of the world’s major river basins, and is second only to the Amazon in terms of biodiversity. Measuring 4,800 kilometers along the mainstem, it traverses China, Myanmar, Laos, Thailand, Cambodia and Vietnam. 72 million people live within the basin, and for a majority access to river resources remain central to livelihoods.  The river was largely free-flowing until the early 1990s, but nowadays it’s seasonal cycle of monsoon flooding and dry-season low flows are shaped by extensive hydropower dam operation.[vi]

According to UN-Water, “Water is the primary medium through which we will feel the effects of climate change.”[vii] In the Mekong region, anticipated and already occurring changes to the climate and hydrology, as well as sea-level rise, are increasingly center to public debates and policy concerns. Whilst there is always uncertainty in making predictions on climate change, the best available analysis anticipates weather change including a mean temperature rise of 0.2 oC per decade, a regional increase in annual precipitation of 200 mm, more regular severe floods and droughts, and greater seasonal uncertainty. Meanwhile, sea level rise will increasingly threaten the low-lying delta area.[viii]

Climate change trends, however, need to be considered in the context of existing challenges within the basin. These include the changing flow regime and reduced sediment loads due to extensive dam construction, loss of wetlands and degrading riverine ecosystems, and weaknesses in transboundary water governance including incomplete water data sharing and the accountability of river-related decision-making – especially related to large hydropower dams [ix]. Climate change will intersect with and amplify these challenges[x], posing risks to terrestrial and aquatic ecosystems, agriculture and fisheries, livelihoods and food security, as well as national economic growth, especially under drier climate scenarios.[xi]

For example, the delta area in Vietnam is at risk from sea-level rise, a risk that is further heightened by the reduced sediment load of the river due to dam construction and sand mining, and even the changing patterns of tropical cyclones, which have until now washed more sediment into the delta to replenish it, but that could be undermined by climate change if the tracks of tropical cyclones shift north and eastwards as anticipated.[xii] It is also reported that groundwater extraction for agriculture is causing the delta to sink.[xiii] The risk to food security, local livelihoods, and national economy are significant, given that the Mekong Delta in Vietnam produces half of the country’s rice production, sixty percent of the shrimp harvest, and eighty percent of the fruit crop.[xiv] This has led some to identify the initial stages of environmental-driven migration from the Delta.[xv]

Implications for hydropower in the Lancang-Mekong basin

The construction of hydropower dams in the Lancang-Mekong basin has been controversial for decades, including whether such projects can be considered sustainable given the environmental and social impacts that typically accompany them. Climate change brings an additional dimension to this already vigorous debate. Proponents argue that hydropower dams are an appropriate mitigation strategy due to their reduced carbon emissions.[xvi] However, recent research in the Mekong Region concluded that, due to methane emissions from reservoirs “…hydropower in the Mekong Region cannot be considered categorically as low-emission energy.”[xvii] The authors add “… the GHG [Greenhouse gas] emissions of hydropower should be carefully considered case-by-case together with the other impacts on the natural and social environment.”

One fundamental question is whether more hydropower projects are needed to meet electricity demand. In Thailand, which is the main electricity market for hydropower from Laos, the peak demand was 30,853 MW in May 2019[xviii], whilst the total installed capacity as of January 2020 is 45,313 MW.[xix] Imported hydropower from Laos constitutes 3,954 MW, which Thailand’s power planners consider to contribute relatively low price and flexible capacity to Thailand’s grid for meeting peak power demands.[xx] However, comparing current electricity demand with overall capacity, Thailand has a very high reserve margin of 47 percent, which is three times a typical reserve margin of 15 percent. In China too, there is increasingly a challenge of oversupply of electricity due to the past significant investment in generation capacity and the recent shifts in structure of its economy.[xxi]

While in other countries of the region there remains electricity demand to be met in both urban and rural areas, a second question is whether there are nowadays better ways to meet this remaining demand. The current approach to meeting demand remains predominantly new supply generated by large-scale coal-fired and gas-fired power stations, or large hydropower dams. There are, however, a growing number of initiatives towards decentralized renewable electricity, energy efficiency and demand side management that are disrupting business-as-usual. These include, for example, technologies such as ‘block chain solar power’ and decentralized smart grids or microgrids, new practices such as ‘energy service companies,’ and new modes of financing.[xxii]

A third important question is how climate change will affect the operation of hydropower. The Mekong River Commission (MRC), in a recent report, suggest that under wetter climate scenarios, there would be a greater potential for hydropower generation.[xxiii] At the same time, they flag that the issue of spillway design and dam safety, which could place downstream areas at risk, still requires further assessment. This is a salient challenge in the Mekong Region, given the recent Xe Pian Xe Namnoi dam collapse in July 2018, which displaced over 6,600 people and, according to official figures left 40 people dead and 31 people missing.[xxiv] Meanwhile, extreme dry periods could reduce the dependable generation capacity of hydropower, which would require additional investment for back-up capacity; one option suggested by the MRC is floating solar PV on the reservoir surface, although this would effectively increase the cost of hydropower.

A fourth important question in the context of climate change is whether large dams might mitigate extreme flood and drought. Regarding the hydropower projects on the Lancang River[xxv] in China, in recent years there have been some ‘emergency water releases’ intended to mitigate drought.  In March 2016, for example, shortly before the region’s leaders committed to the Lancang Mekong Cooperation framework, China released water from the Lancang dams stated as a show of goodwill in an effort to alleviate the severe drought in the Lower Mekong basin at that time, although unfortunately the water releases caught some downstream communities unaware.[xxvi]

Yet, the opposite has also occurred, namely that dam operation has exacerbated drought. During the last drought (in July 2019) and the current one[xxvii], operation of the Jinghong Dam – the lowest in China’s Lancang cascade - has on occasion led to significant reductions in river water flow and abnormal fluctuations. Flow reductions were claimed to be necessary due to maintenance at the project. The MRC reported that water levels dropped on the river by up to one meter in Thailand and Laos from 27 December 2019 to 4 January 2020.[xxviii] As agreed by Memorandum of Understanding[xxix], China had sent notification via the MRC on 31 December, which stated water outflows would drop by 50 percent affecting river water levels in Thailand, Lao PDR and Cambodia[xxx]. However, these notifications often arrive to the MRC with little time to spare, and the system to disseminate the information amongst communities is still ineffective.

Acknowledging the impacts on livelihoods, the Thai Government recently publicly stated it would raise the severe impact of the drought within the MRC, including in the context of the upstream dam operation that is received with insufficient notice. This could be read as a significant rebuke given that downstream countries are typically cautious in their regional diplomacy towards China.[xxxi] Indeed, there may be a broader shifting of position, given that Thailand recently also cancelled long-standing joint plans with China for rapid’s blasting of the river’s upper stretch intended to facilitate the navigation by large trading boats.[xxxii] 

Regarding tributary hydropower projects in Laos, there is less available analysis. The MRC, however, has flagged that as most large projects being constructed are under Build-Operate-Transfer (BOT) contracts, they are locked into take-or-pay electricity contracts. As such, their potential to be operated as multi-purpose projects that could contribute to extreme flood or drought mitigation could be limited as electricity production is to be prioritized.[xxxiii]

Responses by regional institutions

The Mekong River Commission (MRC) is an intergovernmental river basin commission established by international treaty in 1995.[xxxiv] Climate change has become an increasingly significant element of its work that cumulated with the publication of a Mekong Climate Change Adaptation Strategy and Action Plan (MASAP) in November 2017.[xxxv] In its State of the Basin Report 2018 (published in late 2019), the impacts of climate change are one of five critical dimensions that constitute its basin monitoring framework.[xxxvi] Various other studies have also been published relevant to climate change adaptation, including on flooding[xxxvii], the impacts of climate change on hydropower production (mentioned above) [xxxviii], and a drought management strategy published in November 2019.[xxxix] The MRC also gathers data on river flow, water quality and sediment transport that are important for understanding climate change.

Whilst these assessments and regional plans contain important analysis, and the MRC’s role is to facilitate a regional plan for adaptation to climate change, various long-standing challenges for the MRC remain. These include its ability to influence national plans, its accountability to communities and civil society, and its relationship with China that is a dialogue partner rather than full member state.

In March 2016, the region’s leaders launched the Lancang-Mekong Cooperation (LMC) in Sanya City of Hainan Province, China. Two years later, in Phnom Penh, Cambodia, a Five-Year Plan of Action on Lancang-Mekong Cooperation (2018-2022) was announced that signified the deepening institutionalization of the LMC. Regarding water resources, it includes commitments to inter-governmental cooperation and its institutionalization, as well as technical cooperation and joint research including on the impacts of climate change. Whilst the details are not in the public domain, there is a stated acknowledgement of the need to “Deepen Lancang-Mekong river flood and drought disaster emergency management, carry out joint assessment of flood control and drought relief in Mekong basin, and carry out joint study on the early setting up of communication line/channel for sharing information in emergency case of flood and drought in Lancang-Mekong river.” [xl]

The LMC is a new significant intergovernmental cooperation given that it brings together all six countries that share the Lancang-Mekong basin. However, it also raises challenges for transboundary water governance, including on: the extent to which crucial water data is shared; the LMC’s transparency and accountability to civil society and riparian communities; whether LMC plans for the Lancang-Mekong River adequately consider the environmental and social values of the river; and how the LMC intends to cooperate with the MRC.

On the latter point, in December 2019, the MRC Secretariat and the Lancang-Mekong Water Resources Cooperation Center of the LMC signed a new MoU. Whilst it does not fully resolve underlying tensions in competing mandates and approaches between the two regional organizations, it signals an intent to cooperate on various technical areas including: data and information exchange, basin monitoring, and joint assessment and study.[xli]

A first step will be to “to conduct a joint research on the 2019 drought and low flow situation in the Mekong River basin… to be completed by September 2020.”[xlii] This is clearly a significant study. However, in the context of the past impacts of China’s dam operation on Northern Thailand impacting farmers and fishers it is also likely to be a contentious one. During the 2019 drought, a public dispute broke out between representatives of the Chinese Embassy in Bangkok[xliii] and civil society groups in Northern Thailand[xliv] over the role of China’s dams in the drought.[xlv] Given these already existing tensions a transparent and accountable study would be imperative that is inclusive of community concerns in terms of both process and final publication. [xlvi]

Meeting the challenge of climate change

A healthy Lancang-Mekong River is central to maintaining livelihoods, but the river is under stress due to existing challenges in the basin that are increasingly intersecting with climate change. The challenges in the basin and the solutions are to-a-degree technical, but are fundamentally a question of national and regional politics including regarding the competing roles, mandates and authorities of the MRC and LMC, as well as the space for decentralized decision-making and local communities voice.

Whilst recently there have been important steps towards improved water data sharing, more remains to be done. In February 2020, a new program of the MRC called the Joint Environmental Monitoring held its inception workshop that is designed to monitor transboundary environmental impacts from the two recently-commissioned mainstream dam projects in Laos.[xlvii] Meanwhile, as detailed above, the MRC and LMC are undertaking a joint study that may improve data sharing on China’s Lancang dams, although this is not guaranteed. The major gap in regional data sharing at present is dam operation for tributary projects. If meaningfully implemented, better data sharing would facilitate improved advanced warning for droughts and floods, and more accountable basin planning, but only if there is the political will to act on the data.

There are a range of further steps that should be taken including: the need to assess the risks of existing large dams to modified river conditions due to climate change; to consider how existing hydropower projects’ contracts can be rewritten to become multi-purpose schemes; and to explore alternative future electricity scenarios utilizing technologies other than hydropower.

More fundamentally, there is the opportunity to take a more holistic and transformative approach towards managing severe drought and flood through adopting a basin-wide perspective on nature-based solutions, as discussed by UNESCO in the United Nations World Water Development Report 2018[xlviii], and increasing support for community preparedness and culturally appropriate adaptation. The present emphasis on large infrastructure-led approaches to manage severe droughts and floods is already, as evidenced in practiced, revealing its limitations; indeed a ‘control approach’ towards nature has been increasingly critiqued and more flexible approaches that adapt to nature encouraged.[xlix] In the nature-based approach, UNESCO emphasize conserving or rehabilitating natural ecosystems to enhance the storage, quality and availability of water at scales ranging from the micro- to macro, including, for example, forest and wetlands. Necessarily, within such an approach, local community leadership and wider community involvement is central. Meanwhile, enabling in an inclusive, participatory and culturally appropriate way community preparedness and adaptation strategies is important, including effective provision of emergency relief and supporting alternative ways of making a living during periods of severe drought.

———

[i] Director, Center of Excellence in Resource Politics for Social Development, Center for Social Development Studies, Faculty of Political Science, Chulalongkorn University. Email: Carl.Chulalongkorn@gmail.com

[ii] MRC (2019) “Mekong water levels reach low record” 18 July 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-levels-reach-low-record/ [Last accessed 23 Feb 2020]

[iii] MRC (2019) “Drought continues to hit Mekong countries, risking stress on crop production, water shortages” 19 Nov 2019 http://www.mrcmekong.org/news-and-events/news/drought-continues-to-hit-mekong-countries-risking-stress-on-crop-production-water-shortage/ [Last accessed 23 Feb 2020]

[iv] Lovgren, S. (2020) “Southeast Asia’s most critical river is entering uncharted waters” 31 Jan 2020 https://www.nationalgeographic.com/science/2020/01/southeast-asia-most-critical-river-enters-uncharted-waters/ [Last accessed 23 Feb 2020]

[v] e.g see Evers, J. and A. Pathirana (2018). "Adaptation to climate change in the Mekong River Basin: introduction to the special issue." Climatic Change 149(1): 1-11.

[vi] WLE Greater Mekong (n.d.) “Mekong Dams Observatory” https://wle-mekong.cgiar.org/changes/our-research/greater-mekong-dams-observatory/ [Last accessed 23 Feb 2020]; Middleton, C. and J. Allouche (2016). "Watershed or Powershed?: A critical hydropolitics of the ‘Lancang-Mekong Cooperation Framework." The International Spectator 51(3): 100-117.

[vii] UN-Water (n.d.) “Water and Climate Change” https://www.unwater.org/water-facts/climate-change/ [Last accessed 23 Feb 2020]

[viii] MRC (n.d.) “Climate Change” http://www.mrcmekong.org/topics/climate-change/ [Last accessed 11.2.20] and MRC (2019) “State of the Basin Report 2018”

[ix] MRC (2019) “Mekong water related resources need urgent protection, better planning and management, says a new MRC report” 22 Oct 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-related-resources-need-urgent-protection-better-planning-and-management-says-a-new-mrc-report/ [Last accessed 23 Feb 2020]

[x] WWF (n.d.) “Climate Change” http://greatermekong.panda.org/challenges_in_the_greater_mekong/climate_change_in_the_greater_mekong/ [Last accessed 23 Feb 2020]

[xi] MRC (2019) “The Council Study: Study on Sustainable Management and Development of the Mekong River including Impacts of Mainstream Hydropower Projects” http://www.mrcmekong.org/assets/Publications/Council-Study/Key-findings-of-the-Council-Study_26-Nov-18_Revised-4-Jan-19.pdf [Last accessed 23 Feb 2020]  

[xii] McSweeny, R. (2016) “Shifting tropical cyclones increases threat to sinking Mekong delta” https://www.carbonbrief.org/shifting-tropical-cyclones-increases-threat-to-sinking-mekong-delta [Last accessed 23 Feb 2020] and Darby, S. E. et al. (2016) Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity, Nature, doi:10.1038/nature19809

[xiii] Fawthrop, T. (2019) “Dams and climate change are killing the Mekong River” 28 Nov 2019

https://www.todayonline.com/commentary/dams-and-climate-change-are-killing-mekong-river [Last accessed 23 Feb 2020]

[xiv] Warner, K., et al (2009) “In search of Shelter: Mapping the effects of climate change on human migration and displacement.” A policy paper prepared for the 2009 Climate Negotiations. Bonn, Germany: United Nations University, CARE, and CIESIN, Columbia University and in close collaboration with the European Commission “Environmental Change and Forced Migration Scenarios Project”, the UNHCR, and the World Bank.

[xv] Dun, O. (2011). "Migration and Displacement Triggered by Floods in the Mekong Delta." International Migration 49(S1): 200-222; and Chapman, A. and Tri, V.P.D. (2018) “How climate change is triggering a migrant crisis in Vietnam” 25 Jan 2018 https://www.independent.co.uk/environment/climate-change-vietnam-migration-crisis-poverty-global-warming-mekong-delta-a8153626.html [Last accessed 23 Feb 2020]

[xvi] See IHA (n.d.) “Greenhouse gas emissions” https://www.hydropower.org/greenhouse-gas-emissions [Last accessed 23 Feb 2020]

[xvii] Räsänen, T.A. et al (2018) "Greenhouse gas emissions of hydropower in the Mekong River Basin" Environ. Res. Lett. 13 034030 https://iopscience.iop.org/article/10.1088/1748-9326/aaa817

[xviii] EPPO (n.d.) Electricity statistics http://www.eppo.go.th/index.php/en/en-energystatistics/electricity-statistic?orders[publishUp]=publishUp&issearch=1 [Last accessed 23 Feb 2020]

[xix] EGAT (n.d.) “System Installed Generating Capacity: Jan 2020” https://www.egat.co.th/en/information/statistical-data?view=article&layout=edit&id=80 [Last accessed 23 Feb 2020]

[xx] EPPO (2016) Power Purchased from Laos PDR (posted on 29 March 2016) http://www.eppo.go.th/index.php/en/energy-information-services/power-purchased-from-laos-pdr; and EGAT (2020) “System Installed Generating Capacity” (as of January 2020). https://www.egat.co.th/en/information/statistical-data?view=article&id=80 [Last accessed 9 March 2020]

[xxi] Magee, D. and Hennig, T. (2017) “Hydropower boom in China and along Asia’s rivers outpaces regional electricity demand” 28 April 2017. https://www.thethirdpole.net/en/2017/04/28/hydropower-boom-in-china-and-along-asias-rivers-outpaces-regional-electricity-demand/ [Last accessed 23 Feb 2020]

[xxii] Hong, C-S. (2019) “Thailand’s Renewable Energy Transitions: A Pathway to Realize Thailand 4.0” 9 March 2019. https://thediplomat.com/2019/03/thailands-renewable-energy-transitions-a-pathway-to-realize-thailand-4-0/ [Last accessed 23 Feb 2020] and UNESCAP (2018) Energy Transition Pathways for 2030 Agenda for Asia and the Pacific: Regional Trends Report on Energy for Sustainable Development 2018

[xxiii] MRC (2018) “Basin-Wide Assessment of Climate Change Impacts on Hydropower Production” http://www.mrcmekong.org/assets/Publications/Basin-wide-Assessment-of-Climate-Change-Impacts-on-Hydropower-Production_report-13May19.pdf [Last accessed 23 Feb 2020]

[xxiv] RFA (2019) “Laos Pays Compensation to Families of Dead and Missing in PNPC Dam Disaster” 29 Jan 2019. https://reliefweb.int/report/lao-peoples-democratic-republic/laos-pays-compensation-families-dead-and-missing-pnpc-dam [Last accessed 23 Feb 2020]

[xxv] The Lancang River is the name in China of the upper stretch of the Mekong River

[xxvi] Middleton, C. and J. Allouche (2016). "Watershed or Powershed?: A critical hydropolitics of the ‘Lancang-Mekong Cooperation Framework." The International Spectator 51(3): 100-117.

[xxvii] MRC (2019) “Mekong water levels to drop due to dam equipment testing in China” 31 Dec 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-levels-to-drop-due-to-dam-equipment-testing-in-china/ [Last accessed 23 Feb 2020]

[xxviii] MRC (2020) “Weekly Dry Season Situation Report for the Mekong River Basin Prepared on: 07/01/2020, covering the week from 31 Dec 2019 to 5 Jan 2020” https://reliefweb.int/sites/reliefweb.int/files/resources/2020-01-06%20Weekly%20Dry%20Season%20Situation.pdf [Last accessed 23 Feb 2020]

[xxix] MRC (2019) “MRC and China renew pact on water data provision and other cooperation initiatives” http://www.mrcmekong.org/news-and-events/news/mrc-and-china-renew-pact-on-water-data-provision-and-other-cooperation-initiatives/ [Last accessed 9 March 2020]

[xxx]  MRC (2019) “Mekong water levels to drop due to dam equipment testing in China” 31 Dec 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-levels-to-drop-due-to-dam-equipment-testing-in-china/ [Last accessed 23 Feb 2020]

[xxxi] Sivasomboon, B. and Phaicharoen, N. (2020) “Thailand to Air Concerns with River Commission over Drought, Chinese Dams in Mekong” https://www.benarnews.org/english/news/thai/thailand-china-01142020183829.html [Last accessed on 23 Feb 2020]

[xxxii] Zhou, L. (2020) “Thailand nixed China’s Mekong River blasting project. Will others push back?” https://www.scmp.com/news/china/diplomacy/article/3051812/thailand-nixed-chinas-mekong-river-blasting-project-will [Last accessed 9 March 2020]

[xxxiii] Kijewski, L. (2019) “Experts doubt effectiveness of new plan to address Mekong drought” 26 Dec 2019 https://www.aljazeera.com/news/2019/12/experts-doubt-effectiveness-plan-address-mekong-drought-191225010811086.html/ [Last accessed 23 Feb 2020]

[xxxiv] MRC (1995). Agreement on the Cooperation for the Sustainable Development of the Mekong River Basin, 5 April 1995 http://www.mrcmekong.org/assets/Publications/policies/agreement-Apr95.pdf [Last accessed 23 Feb 2020]

[xxxv] MRC (2017) “Mekong Climate Change Adaptation Strategy and Action Plan” http://www.mrcmekong.org/assets/Publications/MASAP-book-28-Aug18.pdf [Last accessed 23 Feb 2020]

[xxxvi] MRC (2019) “State of the Basin Report 2018” http://www.mrcmekong.org/assets/Publications/SOBR-v8_Final-for-web.pdf [Last accessed 23 Feb 2020]

[xxxvii] MRC (2019) “Enhancement of Basin-wide Flood Analysis and Additional Simulations under Climate Change for Impact Assessment and MASAP Preparation” http://www.mrcmekong.org/assets/Publications/Enhancement-of-Basin-wide-Flood-Analysis-27June19.pdf [Last accessed 23 Feb 2020]                                                  

[xxxviii] MRC (2018) “Basin-Wide Assessment of Climate Change Impacts on Hydropower Production” http://www.mrcmekong.org/assets/Publications/Basin-wide-Assessment-of-Climate-Change-Impacts-on-Hydropower-Production_report-13May19.pdf [Last accessed 23 Feb 2020]

[xxxix] MRC (2019) “Drought Management Strategy for the Lower Mekong Basin 2020-2025” http://www.mrcmekong.org/assets/Publications/MRC-DMS-2020-2025-Fourth-draft-V3.0-formatted.pdf [Last accessed 23 Feb 2020]

[xl] LMC (2018) “Five-Year Plan of Action on Lancang-Mekong Cooperation (2018-2022)” https://pressocm.gov.kh/wp-content/uploads/2018/01/ENG-Five-Year-Plan-of-Action-on-Lancang-Mekong-Cooperation-2018-2022.pdf [Last accessed 23 Feb 2020]

[xli] MRC (2019) “MRC Secretariat, LMC Water Center ink first MOU for better upper-lower Mekong management” 18 Dec 2019 http://www.mrcmekong.org/news-and-events/news/mrc-secretariat-lmc-water-center-ink-first-mou-for-better-upper-lower-mekong-management/  [Last accessed 23 Feb 2020]

[xlii] MRC (2019) “Mekong water levels to drop due to dam equipment testing in China” 31 Dec 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-levels-to-drop-due-to-dam-equipment-testing-in-china/ [Last accessed 23 Feb 2020]

[xliii] Yang Yang “False report undermines Mekong cooperation” Bangkok Post 12.7.19 https://www.bangkokpost.com/opinion/opinion/1711051/false-report-undermines-mekong-cooperation [Last accessed 23 Feb 2020]

[xliv] Roykaew, N. (2019) “Opinion: China must be sincere on the Mekong” 17 July 2019 Bangkok Post https://www.bangkokpost.com/opinion/opinion/1713756/china-must-be-sincere-on-mekong [Last accessed 23 Feb 2020]

[xlv] Sunchindah, A. “Mekong dilemmas need political will to resolve” 26.7.19 https://www.bangkokpost.com/opinion/opinion/1719067/mekong-dilemmas-need-political-will-to-resolve [Last accessed 23 Feb 2020]

[xlvi] Bainbridge, A. (2020) “China's Mekong River dams are generating renewable energy, but are costing locals their livelihoods” 20 Jan 2020 https://www.abc.net.au/news/2020-01-20/china-mekong-river-plan-creates-renewable-energy-but-costs-jobs/11872640 [Last accessed 23 Feb 2020]; Wongcha-um, P. “Missing Mekong waters rouse suspicions of China” Reuters 25.7.19 https://www.reuters.com/article/us-mekong-river/missing-mekong-waters-rouse-suspicions-of-china-idUSKCN1UK19Q?fbclid=IwAR2cMyWj9qSwVRAs7lABnzI7oaD1oCvyjD5TSDcDkWf3CJwDqcU46GY7lUs [Last accessed 23 Feb 2020]

[xlvii] MRC (2020) “Pilot program to monitor impacts from Xayaburi and Don Sahong takes off” http://www.mrcmekong.org/news-and-events/news/pilot-program-to-monitor-impacts-from-xayaburi-and-don-sahong-takes-off/ [Last accessed 9 March 2020]

[xlviii] UNESCO (2018) “Nature Based Solutions for Water: The United Nations World Water Development Report 2018”

[xlix] Allouche, J., Middleton C. and Gyawali, D. (2019). The Water-Food-Energy Nexus: Power, Politics and Justice Routledge-Earthscan: London and New York

POLICY BRIEF: Shaping the Future of Mekong Regional Architecture: Reinforcing Transboundary Water Governance Through Reciprocity

Transboundary-water-policy-brief_Final-25.6.19pg1-1.jpg

Publication date:
June 2019

Publication: 
Shaping the Future of Mekong Regional Architecture: Reinforcing Transboundary Water Governance Through Reciprocity

Download the policy brief here.

This policy brief is produced for track 1.5 Mekong Policy Dialogue on evolving sub-regional architecture and the role of Ayeyawady-Chao Phraya-Mekong Economic Cooperation Strategy (ACMECS), co-organized by Department of Foreign Affairs and Trade - Australia (DFAT), The Asia Foundation (TAF), and Center for Social Development Studies (CSDS) . For more information more resources from the dialogue, please visit this link here.

Authors: 
Carl Middleton, David J. Devlaeminck, and Anisa Widyasari

Key Findings

  • There is deepening cooperation between the Mekong River Commission (MRC) and Lancang Mekong Cooperation (LMC). The joint activities to date can be understood as examples of specific reciprocity, namely specific exchanges of more-or-less equal value with clearly defined obligations, and have helped build trust.

  • To further collaboration, regional governments will need to gradually move from specific reciprocity to diffuse reciprocity. Here, cooperation is not between specific actors alone (i.e. the MRC and LMC), but reflects a broader cooperation between wider groups of actors and beyond river-based considerations.

  • To date, the MRC has directed more attention to the benefits to the river, including wild capture fisheries and other ecosystem services, whilst the LMC has emphasized more regional economic planning and projects. By working together, the river might be better protected, whilst simultaneously yielding sustainable generation of economic benefits.

  • Some potential directions for furthering collaboration include: a joint, systematic baseline assessment of the current ecological and socio-economic status of the Lancang-Mekong River and key drivers of change; a joint study on the existing legal rules, customary principles, and pledges maintained by each organization to identify points of commonality and difference; and a collaborative analysis to define reciprocity as a concept, and how it can be operationalized through relevant rules and regulations working towards a rulesbased approach.

  • The concept of reciprocity encompasses not just inter-state cooperation but also the interests and activities of non-state stakeholders, such as riverside communities. The MRC and LMC could consider co-organizing multi-stakeholder dialogues to generate a more complete picture of the Lancang-Mekong River and its diverse economic, social and cultural values.

BOOK CHAPTER: Knowledge coproduction for recovering wetlands, agro-ecological farming, and livelihoods in the Mekong Region

0001.jpg

Publication date:
August 2019

Publication:
Knowledge Co-production for Recovering Wetlands, Agro-ecological Farming and Livelihoods in the Mekong Region

Author:
Carl Middleton, Kanokwan Manorom, Nguyen Van Kien, Outhai Soukkhy and Albert Salamanca

Editors:
Chayanis Krittasudthacheewa, Hap Navy, Bui Duc Tinh, and Saykham Voladet

For further details on the book please visit the book's website here.

You can access the chapter here.

The Mekong Region contains extensive wetlands of high levels of biodiversity that have long provided a wide range of ecosystem services that are equally important to human well-being. In many cases, these wetlands have long been important for agro-ecological production, including rice and vegetable farming, livestock raising, fishing and aquaculture, and the collection of non-timber forest products (NTFPs), thus supporting local livelihoods and economies.

Unfortunately, many wetlands in the Mekong Region have been degraded or even lost, largely due to agricultural intensification, large-scale water infrastructure development, and land use changes associated with urbanization The extensive loss of wetlands is a threat to sustainable economic development through the loss of core ecosystem services that they provide. It also threatens the enjoyment of a range of human rights, including the rights to life, health, food, water and culture. When traditional wetlands agro-ecological practices are lost, so too are the local knowledge and culture associated with them.

Addressing complex problems such as the loss of wetlands requires gathering and activating a range of different types of knowledge, including scientific (expert), local, practical, and political. In this chapter, we present three case studies of knowledge coproduction research in Thailand, Vietnam and Laos aimed at the more inclusive ecological governance of wetlands degraded by largescale water infrastructure and the recovery of associated agro-ecological systems and livelihoods. We consider knowledge coproduction to be the dynamic interaction of multiple actors, each with their own types of knowledge, who coproduce new usable knowledge specific to their environmental, sociopolitical and cultural context and that can influence decision-making and actions on the ground. We argue that the knowledge coproduction approach enables research to move beyond weak forms of “participation” and towards social learning that builds trust, partnership and ownership among actors, and can generate innovative solutions for wetland and livelihood recovery.

Please contact Dr. Carl Middleton for more information.

Citation: Middleton, C., Manorom, K., Nguyen, V.K., Soukkhy, O. and Salamanca, A. (2019) “Knowledge Co-production for Recovering Wetlands, Agro-ecological Farming and Livelihoods in the Mekong Region” (pp 9-34) in Krittasudthacheewa, C., Navy, H., Tinh, B.C. and Voladet, S. (eds). Development and Climate Change in the Mekong Region. SIRD/Gerakbudaya, Malaysia

OPINION: Mekong Drought Reveals Need for Regional Rules-based Water Cooperation

by Carl Middleton

Photo Credit: The Network of Thai People in Eight Mekong Provinces

Photo Credit: The Network of Thai People in Eight Mekong Provinces

The severe drought currently faced by farmers and fishers in the Mekong basin is a disaster that reveals many things. It reveals the extent to which large dams now increasingly control river water levels. It reveals too the limits to cooperation between the countries sharing precious water in times of scarcity. And, it reveals the likelihood of an increasingly uncertain future under the conditions of climate change. What must be done in the short and long term?

It is – in theory – now almost the middle of the rainy season. Usually at this time the Mekong River is beginning to swell with the rain waters of the Southwest monsoon. Yet, this year water levels are as if it were a drought in the dry season. This has seriously affected farmers, with their planted rice and other crops withering in parched soil. It has also impacted fishers dependent on the river’s ecology.

In mid-July, the intergovernmental Mekong River Commission (MRC) stated that the river’s water levels are among the lowest on record for June and July. They explain that there has been a shortage of rainfall across the basin since January. The MRC also highlight that dam operation on the upper Mekong River in China, where it is known as the Lancang River, could have an impact. China sent a notification to the MRC indicating that between 5 to 19 July the water released from the lower of its eleven large dams, called Jinghong, would “fluctuate” due to “grid maintenance.”

Photo Credit: The Network of Thai People in Eight Mekong Provinces

Photo Credit: The Network of Thai People in Eight Mekong Provinces

This has had a two-fold impact. First, it withheld water at a time when downstream countries would have most benefited from more water being released. Second, sending unnatural pulses of water down the river harms river ecology and livelihoods dependent upon it, including riverbank gardens, river weed collection, and fishing, although this has in fact occurred since the late 1990s.

Alongside China’s dams, civil society groups have questioned the role of the Xayaburi dam in Northern Laos, which is scheduled to be commissioned in October this year. Since mid-July, the project had been testing its turbines, causing river fluctuations downstream. The company has denied that they have played a role in the drought, and ironically have even lamented that they were also affected by the withholding of water by China. However, Thailand’s Office of National Water Resources sent a letter to the Government of Laos requesting the testing be temporarily halted.

Less attention has been paid to the possible role of tributary hydropower dams, in particular in Laos that is progressively fulfilling its government’s vision to become the ‘battery of Southeast Asia.’ Over sixty medium and large-scale dams have been built to date. The question here is whether these tributary projects have also been withholding water to replenish their reservoirs to sell electricity. As with all of the hydropower dams in the Lancang-Mekong basin, little real-time data is in the public domain about reservoir water levels.

What are the lessons learned and what is to be done? Most immediately, support needs to be provided to rural communities both to distribute water to the extent that it is available and provide other means of support including, where necessary, financial support. Once the rains do arrive, as is anticipated any day now, hydropower project operators should resist the temptation to immediately begin replenishing their reservoirs for power generation. Rather, the priority should be with distributing water to farmers and recovering the river’s ecology for fishers and wildlife.

In the longer term, if it is true that there is little water in hydropower dam reservoirs, this also reveals the fallacy of depending too much on such infrastructure-led solutions towards managing drought. Rather, it indicates that other forms of preparedness will be necessary including better predictive capacity for droughts before they occur, and well-resourced plans once they do occur at the local, national and transboundary level. It should also include rethinking water storage to consider more groundwater and small-scale solutions, rather than focusing only on large dams.

Photo Credit: The Network of Thai People in Eight Mekong Provinces

Photo Credit: The Network of Thai People in Eight Mekong Provinces

Given that the Mekong River is shared between six countries, it is clear that even deeper inter-governmental cooperation is needed. Since the last severe drought in 2016, much has been said about the new regional cooperation under the Lancang-Mekong Cooperation (LMC) between China and downstream countries, including how it should cooperate with the MRC. In March 2016, shortly before the region’s leaders committed to the LMC, China released water from the Lancang dams as a show of goodwill in an effort to alleviate the severe drought at that time, although unfortunately the water releases caught some downstream communities unaware.

Building on the collaboration between the MRC and LMC, rather than depend upon informal arrangements for sharing water between China and downstream countries, it would be better to move towards a clearer rules-based approach. The scope of cooperation, some of which has already started, should include: more comprehensive data sharing between governments and with the public; collaborative research; clear rules and procedures on emergency water release; hydropower cascade operation that mimics, to the extent possible, the natural river flow; and improved procedures for genuine public participation, especially for riverside communities.

In the face of worsening climate change, and recognizing that it is often the most vulnerable who face the greatest risk during times of drought, these short and long-term solutions are needed now more than ever.

For the article published in Thai, please visit this link.

Carl Middleton is Director of the Center of Excellence in Resource Politics for Social Development at the Center for Social Development Studies, Faculty of Political Science, Chulalongkorn University. He can be contacted at Carl.Chulalongkorn@gmail.com.

OPINION: What does Chinese ‘reciprocity’ mean for Mekong’s dams?

by Carl Middleton

The Lancang Mekong supports 70 million people living in the basin(Photo: He Daming)

The Lancang Mekong supports 70 million people living in the basin(Photo: He Daming)

It is now two and a half years since the first Lancang Mekong Cooperation (LMC) leaders’ summit was held in Sanya city on Hainan Island, China. The aim of the LMC – a China led multilateral body involving all six Mekong countries – is to deepen economic, cultural and political ties between China and mainland Southeast Asia. Leaders have repeatedly declared the importance of the Lancang-Mekong River to this cooperation. Reflecting this, on 1-2 November, the LMC will host the “1st Lancang-Mekong Water Resources Cooperation Forum” in Kunming, China.

The LMC’s second leaders’ summit in Phnom Penh, Cambodia in January 2018 revealed the swift pace of the initiative. This is reflected in the numerous senior-level meetings between governments, the initiation of almost 200 China-funded projects, and the LMC’s deepening institutionalisation through various LMC secretariats and working groups. Yet, while China has hosted people-to-people exchange programs and university scholarships, the LMC’s state-centric approach has afforded little opportunity for public deliberation about its overall policy principles and direction.

Through the LMC, some government officials and scholars from China have proposed that downstream and upstream countries have both rights and responsibilities towards each other. This concept of ‘reciprocity’ is not yet official LMC policy, but suggests a shift in government position compared to China’s earlier unilateral construction of dams on the Lancang River. Overall, the LMC and its proposition of ‘reciprocity’ appears to be an invitation to negotiate basin-wide water cooperation on the Lancang-Mekong River.

Much, however, remains uncertain. For example, how will the LMC build upon the existing inter-governmental Mekong River Commission, established in 1995 by the four lower basin countries? How will the LMC address concerns of riverside communities and civil society and ensure their meaningful inclusion? And how will countries ensure the river’s ecological health given the strong push for economic growth and associated water infrastructure projects? This article asks whether the LMC and the concept of ‘reciprocity’ is a promising approach to meet these challenges.

For the full article, please click here.

JOURNAL ARTICLE: National Human Rights Institutions, Extraterritorial Obligations and Hydropower in Southeast Asia: Implications of the Region’s Authoritarian Turn

cover_issue_191_en_US.png

Publication date:
June 2018

Publication: Austrian Journal of Southeast Asia Studies

Authors:
Carl Middleton

Abstract:
This article examines the role of National Human Rights Institutions (NHRIs) and transnational civil society in pursing Extraterritorial Obligation (ETO) cases in Southeast Asia as a means to investigate human rights threatened by cross-border investment projects. Two large hydropower dams under construction in Laos submitted to NHRIs from Thailand and Malaysia, namely the Xayaburi Dam and Don Sahong Dam, are detailed as case studies. The article argues that the emergence of ETOs in Southeast Asia, and its future potential, is dependent upon the collaborative relationship between the NHRIs and transnational civil society networks. Whilst NHRIs are in positions of political authority to investigate cases, civil society also enable cases through networking, research, and public advocacy. Further institutionalization of ETOs is significant to emerging regional and global agendas on business and human rights, including the UN Guiding Principles on Business and Human Rights that both the Thai and Malaysian governments have expressed commitment to. However, in Thailand and its neighboring countries where investments are located there has been an authoritarian turn. Reflecting this, there are weakening mandates of NHRIs and reduced civil and political freedoms upon which civil society depends that challenges the ability to investigate and pursue cases.

Read the article here.

CONFERENCE PROCEEDINGS: Mekong, Salween and Red Rivers: Sharing Knowledge and Perspectives Across Borders

CONFERENCE PROCEEDINGS: Mekong, Salween and Red Rivers: Sharing Knowledge and Perspectives Across Borders

Water resources are inextricably linked to local livelihoods and wellbeing, agricultural production and food security, and local, national and the regional economies across the Mekong region. The Mekong, Red and Salween Rivers are all transboundary rivers that are subject to the dynamics of rapid change as the region increasingly integrates economically and socially. Whether development is inclusive, informed and accountable, and the rights and entitlements of marginalized communities recognized, remains a key challenge.

Read More