POLICY BRIEF: From Local Floating Market to Urban Recreational Area: Redefining Space in a Changing Context – A Case Study of Bang Muang Community and Wat Bot Bon Community

Publication date: May 2024

Publication: From Local Floating Market to Urban Recreational Area: Redefining Space in a Changing Context – A Case Study of Bang Muang Community and Wat Bot Bon Community  

Researchers: Narongpon Laiprakobsup, Thanapan Laiprakobsup

Download the report here.

Summary: This case study examines the transformation of the Bang Muang and Wat Bot Bon communities along Khlong Om Non in Nonthaburi Province, Thailand. The presence of ancient wats and traditional riverside lifestyles reflects the long-standing importance of these neighborhoods. The construction of roads has transformed the areas into tourist destinations, increasing their commercial value. However, narrow side streets pose an obstacle to accessing leisure places, leading to traffic congestion. Developing these areas into nodes that bridge relaxation areas of Khlong Om Non with other Bangkok communities could foster tourism activities and the exchange of resources and knowledge.

Please contact Dr. Thanapan Laiprakobsup for more information.

JOURNAL ARTICLE: Urbanization and farmer adaptation in the Bangkok Suburban area

Publication date: June 2023

Publication: Kasetsart Journal of Social Sciences

Authors: Thanapan Laiprakobsup

Abstract: This article examines how urbanization contributes to the variation of farmers’ adaptation in Southeast Asia. The variation of farmers’ adaptation to urbanization results from urban expansion transforming local communities’ environment and social structure. The patterns of farmers’ adaptation can be categorized into the following: (1) reducing their production capacity; (2) establishing local groups to mobilize resources and manpower; and (3) changing their mode of production to other products and services. In addition, if urban expansion weakens local networks or participation from local communities, farmers hardly ever adapt themselves to new production modes or services. On the other hand, if urban expansion contributes to opportunities for farmers to collaborate with outside markets or external actors, the farmers can, to some extent, adapt their mode of production. The implication from this paper contributes to how policymakers can facilitate collaborative food governance system serving for specific needs of farmers, in particular peri-urban areas, and encourage positive environment between urban communities and farmers in peri-urban areas.

See the full article here.

Key words: Bangkok, collaboration, community, farmers’ adaptation, Suburban area

REPORT: Development of Waterfront Community Sustainable Tourism Program in Bangkok Suburban Area: Participation Process, Peace Identity and Environmental Design

Publication date: June 2023

Publication: Development of Waterfront Community Sustainable Tourism Program in Bangkok Suburban Area: Participation Process, Peace Identity and Environmrntal Design

Researchers: Dr. Thanapan Laiprakobsup - Researcher and Project Leader, Dr. Narongpon Laiprakobsup - Researcher, Ms. Kornkanok Wimolnimit - Research Assistant, Mr. Paratkorn IntraraKamhang - Research Assistant

Download the report here.

Abstract: Economic and social changes have happened in Bangkok’s suburban areas. Expansion of urbancommunities have affected environment and people’s life in local communities in that the people in the local communities and those in urban communities have become estranged. Once people have become estranged, the relationship is distant. In other words, people in Bangkok suburb live separately with less empathy. Empathy in preserving local environment has vaporized. Therefore, it is not strange that environment in Bangkok suburb has been extremely polluted, and such pollution has negatively affected local people in local communities.

Bang Phai waterfront community on Khlong Om Non at Nonthaburi province is the example of local communities in Bangkok suburb which represents changes in community settlement and fuzzy memories on local culture due to economic and social development. Previously, waterfront communities were significant as rice paddy field and fertile fruit gardens having produced food for Bangkok markets. Waterfront communities were significant as the transportation route transiting local people and commodities to outside world. Currently, waterfront communities have been structurally and socially shrunk while local people have tried to adjust themselves to changing economic and social development with limited agricultural capitals which are agricultural product processing and local sightseeing tour delivery.

This research project wants to connect local and urban with local communities by exploring community identity for waterfront communities in suburban areas in order to support public space for meaningful local recreation based on local participation. It proposes that building relationship and bond between local and urban people needs to understand the identity of waterfront communities in terms of physicality and culture and understanding dynamic of waterfront communities under changing contexts. Therefore, local community development needs to depend upon understanding community identity, changes in people, and local participation.

Researchers analyze Khlong Bang Phai waterfront community at Khlong Om Non. The scope of area study ranges from Wat (temple) Mo Lee to Khlong Bang Phai and from Wat Bang Praek to Bang Rak Yai Municipality Administration. For collecting data, the researchers use surveying the community by car and boat, talking to local people, investigating previous research on local community history, architecture, waterfront community development in Bangkok suburb, and photo analyses, participant observation as tourists, and non-participant observation. For analyzing data, Strength, Weakness, Opportunity, and Threat (SWOT) is employed. It is found that the community is strong at multi-cultural heritages, closeness to waterfront, and fruit gardens that several fruits are registered as geographical indicator (GI). However, the community’s weakness includes elderly community, difficulty to access to community due to devious road, unclean and polluted environment and canal at tourist spots, and unattractive sight-seeing program. For opportunity, the community could be benefited from local tourism trend among Thai and foreign tourists and trend of consuming organic fruit. However, expansion of urban communities such as residence divisions and condominium and migration of local people according to selling land property can affect the local community to shrink in the long run.

The researchers propose that local tourist program for Khlong Bang Phai community extend tourist spots beyond the community’s tourist spots in order to make tourists more understanding about the community’s identity connecting to economic and social contexts. The proposed local tourist program starts from Khlong Om Non’s entrance to old Bang Yai market. The program proposes the activities for local tourists along the way to the market such as visiting temples and organic fruit gardens. Furthermore, the research proposes to develop public space at Wat Mo Lee which helps supporting the local tourist program, building recreation area for local people, tourists, and urban residents, and facilitating social bonds among local people, tourists, and urban residents.

Please contact Dr. Thanapan Laiprakobsup for more information.

POLICY BRIEF: Deepening Inclusive Water Diplomacy Through Water Data Sharing on the Mekong-Lancang River

Download the policy brief here.

Authors: Carl Middleton, Anisa Widyasari, Kanokwan Manorom, David J. Devlaeminck, and Apisom Intralawan.

Summary:

  • In the Mekong-Lancang basin, intergovernmental scientific water data sharing has progressively expanded between governments since the early 1990s as an outcome of water diplomacy efforts. Much of this scientific water data has been made public via online platforms.

  • Water data underpins water diplomacy, including through trust building and providing evidence. It is crucial in the Mekong-Lancang basin given changing river conditions due to large dam operations, climate change and other development trends that have intensified hydropolitics in recent years.

  • As water data is increasingly shared between states, more emphasis also needs to be placed on effective and timely communication of water data to riparian communities including advanced warnings on changing river conditions due to upstream dam operations.

  • For a more comprehensive evidence base informing water diplomacy, the scope of water data shared should be expanded to include more monitoring stations and more details on the operation schedules of existing mainstream and tributary dams.

  • To make water diplomacy more inclusive and accountable, a diversity of water knowledge beyond scientific water data is required, including situated community knowledge, and civil society and academic research. Existing intergovernmental platforms could improve mechanisms to receive information from communities, civil society, and others to inform water diplomacy processes.

  • To date, intergovernmental water diplomacy has focused on establishing agreements for water data sharing that increases transparency. A forward-looking policy priority within and beyond scientific water data sharing should be on establishing a rules-based basin-wide regime on the operation of hydropower dams with accountability mechanisms and community participation.

Citation: Middleton, C., Widyasari, A., Manorom, K., Devlaeminck, D.J., and Intralawan, A. (2023) CSDS Policy Brief: Deepening Inclusive Water Diplomacy Through Water Data Sharing on the Mekong-Lancang River. Cambodia Development Resource Institute (CDRI) and Center for Social Development Studies, Faculty of Political Science, Chulalongkorn University. January 2023.

POLICY BRIEF: Climate Change, Mobility and Human Rights: ‘Slow onset’ environmental change and displacement in the Mekong Region

Download the policy brief here.

Visit the event resources for “Climate Change, Mobility and Human Rights” held on 24 November 2022 here.

Authors: Carl Middleton, Clare Steiner and Aran Van Rysselberge

Summary: This policy brief examines the connections between climate change, peoples’ mobility and human rights in the Mekong Region. A particular focus is on the slow-environmental change dimensions of climate change, such as sea level rise and changing seasonal weather patterns, that are shaping peoples’ mobility in less recognized ways. Slow-onset processes introduce significant complexity, given that any decision to migrate intersects with preexisting conditions and other ongoing economic and social development trends. The seeming lack of consensus on how to define and understand this form of ‘environmental migration’ has implications for law and policy, as well as responses on-the-ground.  However, a human rights-based approach is emerging that connects together climate change, mobility and human rights.

REPORT: Pathways to a Sustainable and Just Transformation of the Mekong Region’s Electricity Sector

Publication date: May 2022

Publication: Pathways to a Sustainable and Just Transformation of the Mekong Region’s Electricity Sector

How electricity is generated, and how it is accessed, is of central importance to sustainable development in the Mekong Region, including in terms of environmental impacts, social wellbeing, and economic growth. From mid-2021 to early-2022, CSDS and AMPERES collaborated with 24 researchers from academic institutions, think tanks and civil society organizations to prepare thirteen ‘thinkpieces’ that explore the opportunities and challenges to sustainable and just electricity transformation in the Mekong Region. Each think piece contributes a layer of evidence and insight to understanding the dynamics of electricity in practice in the Mekong Region, ranging from analysis on the regional scaled plans for electricity trade, to examination of the national level processes on power development planning and its outcomes, to local level opportunities and challenges for decentralized off-grid electricity solutions. The aspiration of this collaborative initiative was not to assemble a consensus report, but rather to gather diverse viewpoints on the opportunities and challenges in attaining ‘sustainable and just electricity transformation’ in the Mekong Region. The report aims to set out some new terrains for the electricity debate at scales that range from the local to the regional, and is intended to stimulate public debate on the wide-ranging social, ecological and economic implications of electricity planning.

Download the report here.

Please see the Facebook Live broadcasting here and the agenda here.

Please contact Carl Middleton (CSDS) or Tarek Ketelsen (AMPERES) for more information.

Editors: Carl Middleton and Tarek Ketelsen

Table of Contents

Pathways to a sustainable and just transformation of the Mekong Region’s electricity sector Carl Middleton and Tarek Ketelsen

Renewable energy in the Mekong: Positive movement but significant unmet potential Courtney Weatherby

China’s role in Mekong Region’s energy transition: The elephant in and outside the room Wei Shen

The potential and challenges of regional energy transmission through the China- Mekong multilateral grid interconnections Laurence L Delina

Power Connectivity in the Greater Mekong Subregion: The need for a wider discourse Muyi Yang, Deepak Sharma, Xunpeng Shi, and Kristy Mamaril

Rethinking electricity trade in the Greater Mekong Subregion Thang Nam Do, Paul J. Burke and Bin Lu

Access to agricultural land for people resettled from the Nam Ngiep 1 dam in Lao PDR Sypha Chanthavong

Emerging energy storage technologies and electricity system transformation impacts on Thai-Lao power trade Noah Kittner

Applying global energy technology to reduce carbon dioxide emissions from Thailand’s electricity sector Apisom Intralawan and David Wood

Role of market, competition and regulation in energy transition in Thailand Puree Sirasoontorn

Thailand’s power development planning and a just energy transformation Suphakit Nuntavorakarn

A community-owned model as a key toward just transformation in Cambodia’s renewable energy practice Oudom Ham

Enabling universal electricity and water access to remote villages: A decentralized renewable energy-water approach Ha Thi Hong Hai and Nguyen Quoc Khanh

Rewilding the Mekong: Can the Mekong be restored? Tarek Ketelsen, Rafael J. P. Schmitt, Apisom Intralawan, Le Ha Tien, John Sawdon, Mathias Kondolf

Citation: Middleton, C. and Ketelsen, T. (Eds.) (2022). Pathways to a Sustainable and Just Transformation of the Mekong Region’s Electricity Sector. February 2022. Center for Social Development Studies, Faculty of Political Science, Chulalongkorn University, and the Australia – Mekong Partnership for Environmental Resources and Energy Systems: Bangkok, Ho Chi Minh City and Perth

This report is part of our project Shaping the Future of Mekong Regional Architecture. You can visit the project page here.

BOOK CHAPTER: State, NGOs, and Villagers: How the Thai Environmental Movement Fell Silent

PIC282.jpeg

Publication date:
2021

Publication:
Environmental Movements and Politics of the Asian Anthropocene

Chapter Title:
State, NGOs, and Villagers: How the Thai Environmental Movement Fell Silent

Author:
Jakkrit Sangkhamanee

Editors:
Paul Jobin, Ming- sho Ho and Hsin-Huang Michael Hsiao

For further details on the book and how to purchase, please visit the book's website here. You can also access the chapter individually from the link above.

Abstract

In this chapter, I shed some light on the dynamism of environmental movements in Thailand, focusing on the shifting relations between keys actors as they seek to situate their political agenda within national environmental politics.

The case of Thailand provides an insight into the important relationship between environmental social movements and political spaces that alternate between the confined and the dynamic. On the one hand, environmental movements can be considered as a driving force in the process of democratization at large, the idea popularized by new social movement scholars during the 1990s and 2000s. On the other hand, the context of political regimes in which environmental movements operate also shapes the nature of their advocating agenda and actions. The dualistic relations between these two spheres of operation often fluctuate, influenced by the changing relations between diverse actors. As this chapter has illustrated, Thailand’s environmental politics during the past few decades can be described as a triangulated relation, fundamentally shaped by the ever-changing state, civil society organizations, and citizens.

ธรรมชาติเชิงวิพากษ์: นอกเหนือจากการแบ่งปันข้อมูลน้ำร่วมกันแล้ว แม่น้ำหลานซาง-แม่โขง ยังต้องการธรรมาภิบาลน้ำที่รับผิดชอบ

โดย ผศ.ดร.คาร์ล มิดเดิลตัน[1]

[English version available here]

วิวแม่น้ำโขงที่มองจากเวียงจันทร์ ประเทศลาว (เครดิต: ภาพถ่ายจาก HEINRICH-BÖLL-STIFTUNG SOUTHEAT ASIA)

วิวแม่น้ำโขงที่มองจากเวียงจันทร์ ประเทศลาว (เครดิต: ภาพถ่ายจาก HEINRICH-BÖLL-STIFTUNG SOUTHEAT ASIA)

ในปี 2562 และอีกครั้งในปี 2563 แม่น้ำโขงหรือรู้จักในชื่อแม่น้ำหลานซางที่ตั้งอยู่ในประเทศจีน ได้ประสบกับปัญหาการไหลของกระแสน้ำที่ลดต่ำลง สิ่งนี้ได้สร้างความยากลำบากให้กับผู้คนนับล้านที่อาศัยอยู่ในบริเวณแม่น้ำดังกล่าว

เกิดการถกเถียงในระดับภูมิภาคอย่างเอาจริงเอาจังและแบ่งออกเป็นหลายฝักหลายฝ่ายเกี่ยวกับการลดลงของประแสน้ำอันเกิดจากความแห้งแล้งหรือผลกระทบจากการก่อสร้างเขื่อนขนาดใหญ่ที่ดำเนินการอย่างต่อเนื่องตลอดทั่วทั้งลุ่มน้ำตั้งแต่ปี พ.ศ. 2533 เป็นต้นมา สิ่งนี้ได้ส่งผลให้มีการเฝ้าติดตามและสนใจเป็นอย่างมากในการก่อสร้างเขื่อนไฟฟ้าพลังน้ำทั้ง 11 แห่ง ที่ตั้งอยู่บนลุ่มแม่น้ำสายหลักในประเทศจีนเนื่องจากขาดความโปร่งใสในการดำเนินงานก่อสร้างของโครงการเขื่อนและปริมาณการกักเก็บน้ำในอ่างเก็บน้ำ

ในเดือนเมษายน 2563 องค์กรที่ปรึกษาด้านการวิจัยที่ชื่อว่า อายออนเอิร์ธ (Eyes on the Earth) ได้ทำการเผยแพร่แบบจำลองกระแสน้ำตามธรรมชาติ (ก่อนที่จะมีการสร้างเขื่อน) ของแม่น้ำหลานซาง เพื่อคาดการณ์ผลกระทบของเขื่อนที่ตั้งอยู่ปลายน้ำในพื้นที่ภาคเหนือของประเทศไทย เนื่องจากไม่มีการตรวจสอบอย่างจริงจังในทรัพยากรสาธารณะอันเป็นที่ตั้งของสถานีวัดน้ำในประเทศจีน แบบจำลองทางสถิติ (Statistical Model) ได้ใช้ข้อมูลดาวเทียมเพื่อสร้าง “ดัชนีความเปียกชื้น” เพื่อคาดการณ์ปริมาณน้ำในอ่างกักเก็บน้ำและหลังจากนั้นจะนำผลที่ได้นี้ไปเชื่อมโยงกับการตรวจวัดระดับน้ำรายเดือนที่สถานีวัดน้ำใน อ.เชียงแสน ประเทศไทย โดยรวมแล้วการศึกษาครั้งนี้แสดงให้เห็นว่าตั้งแต่มีการก่อสร้างเขื่อนในแม่น้ำหลานซางที่ได้รับมอบอำนาจหน้าที่ให้ดำเนินการก่อสร้างในช่วงต้นปี 2533 ซึ่งระดับน้ำมีการลดระดับลงในช่วงฤดูฝนและเพิ่มสูงขึ้นในช่วงฤดูแล้ง การผิดปกติเพิ่มมากขึ้นและเกิดความผันผวนอย่างรวดเร็วในระดับน้ำทั้งในฤดูแล้งและฤดูฝน การเปลี่ยนแปลงเหล่านี้ปรากฏชัดตั้งแต่ปี 2555 เมื่อเขื่อนนัวจาตู้ (Nouzhadu) ที่มีกำลังการผลิตกระไฟฟ้าขนาด 5,850 เมกะวัตต์ เริ่มเติมน้ำเข้าไปในอ่างเก็บน้ำนั่นจึงทำให้เห็นว่าอ่างเก็บน้ำแห่งนี้มีปริมาณขนาดใหญ่กว่าทั้ง 4 เขื่อนที่สร้างขึ้นมาก่อนหน้านี้รวมกันเสียอีก

ในขณะที่ข้อสรุป (ความคิดเห็น) ต่างๆ เหล่านี้ได้มาจากการศึกษาทางวิทยาศาสตร์ที่ดำเนินการมาก่อนหน้านี้ รายงานที่จัดทำรายงาน นว่าEำเนินการมาก่อนหน้านี้ ทยาี่จะโดย Eyes on the Earth ได้รับความสนใจจากสื่อเป็นอย่างมากทั้งในระดับภูมิภาคและระดับนานาชาติเนื่องจากกลุ่มภาคประชาสังคมหลายกลุ่มรวมทั้งตัวแทนของรัฐบาลสหรัฐอเมริกาอ้างว่ามีหลักฐานชิ้นสำคัญที่บ่งชี้ว่ารัฐบาลจีนจะต้องแสดงความรับผิดชอบต่อปัญหาความรุนแรงจากภัยแล้งในช่วงระหว่างปี พ.ศ.2562 – 2563 อันเนื่องมาจากการ “ปิดก๊อก” หรือ กักตุนน้ำ” เพื่อเก็บไว้ใช้ของประเทศจีน ถ้อยแถลงการณ์เหล่านี้ได้นำไปสู่การโต้แย้งจากนักการทูตและนักวิจัยของจีนเป็นจำนวนมาก

การกล่าวอ้างที่สำคัญดังกล่าวนำไปสู่การตรวจสอบรายงานของ Eyes on Earth อย่างละเอียดถี่ถ้วน ได้แก่คณะกรรมาธิการแม่น้ำโขง (The Mekong River Commission: MRC) ออสเตรเลีย-ความร่วมมือแม่น้ำโขงเพื่อทรัพยากรสิ่งแวดล้อมและระบบพลังงาน (The Australia – Mekong Partnership for Environmental Resource and Energy Systems: AMPERES) และนักวิชาการที่ตั้งข้อสังเกตุถึงข้อจำกัดบางอย่าง เช่น ในรายงานได้แสดงให้เห็นถึงผลลัพธ์ของระดับน้ำแต่ไม่สามารถพิจารณาได้ว่าสิ่งนี้นั้นเทียบเท่ากับปริมาณน้ำ ไม่ได้บ่งบอกว่าจีนสามารถกักเก็บน้ำได้ทั้งหมดในช่วงฤดูฝน ด้วยเหตุนี้ ความสามารถในการยั้บยั้งการไหลของน้ำในแม่น้ำอย่างเต็มกำลังเป็นสาเหตุให้เกิดความแห้งแล้งในพื้นที่บริเวณปลายน้ำ และจะดีมากยิ่งขึ้นกว่าหากการศึกษาครั้งนี้ได้รับการทบทวนและตรวจสอบก่อนที่จะมีการเผยแพร่สู่สาธารณะ ยิ่งไปกว่านั้น นักวิจัยจาก AMPERES ได้กล่าวว่าการนำเสนอรายงานของ Eyes on Earth ในการอภิปรายสาธารณะบ่อยครั้งมักจะเกินกว่าการค้นพบที่แท้จริง ในเดือนกรกฎาคม 2563 นักวิจัยจากมหาวิทยาลัยชิงหฺวา (Tsinghua University) ซึ่งเป็นสถาบันวิจัยชั้นนำในประเทศจีนได้กล่าวเพิ่มเติมในข้อถกเถียงนี้ด้วยการศึกษาที่ระบุว่าภูมิภาคนี้ประสบปัญหาภัยแล้งอยู่ก่อนแล้ว อีกครั้งหนึ่งที่ AMPERES ได้ตรวจสอบการวิจัยนี้ซึ่งค้นพบว่าจำเป็นที่จะต้องมีการชี้แจงเพิ่มเติมเยอะมากขึ้นและข้อสรุปของการศึกษาเกี่ยวกับประโยชน์ของเขื่อนผลิตไฟฟ้าแบบขั้นบันได (Dam Cascade) ในประเทศจีนเพื่อบรรเทาภาวะภัยแล้งที่พื้นที่ปลายน้ำอาจทำให้เกิดการไขว้เขวได้

โดยรวมแล้วการศึกษาที่มีอยู่โดยทั้งหมดเกี่ยวกับผลกระทบของเขื่อนขั้นบันไดในประเทศจีนที่มีต่อประเทศปลายน้ำในขณะนี้มักอาศัยมักอาศัยข้อมูลที่ไม่สมบูรณ์ครบถ้วนเนื่องจากไม่สามารถเข้าถึงข้อมูลที่มีอยู่แล้วได้ ยิ่งไปกว่านั้นความแห้งแล้งในปี 2562 และ 2563 ยังเกิดขึ้นในช่วงเวลาที่ภูมิศาสตร์การเมืองทวีความรุนแรงมากขึ้นระหว่างสหรัฐอเมริกาและจีน ในเอเชียตะวันออกเฉียงใต้และทั่วโลก ในเดือนกันยายนปี 2563 ความร่วมมือลุ่มน้ำโขง-สหรัฐฯ​ (Mekong-U.S. Partnership: MUSP) ได้เปิดตัวขึ้นซึ่งพยายามที่จะกระชับความสัมพันธ์ระหว่างประเทศปลายน้ำและสหรัฐอเมริกาให้แน่นแฟ้นยิ่งขึ้น นั่นจึงทำให้จีนควบคุมทรัพยากรน้ำในลุ่มน้ำตอนบนด้วยความระมัดระวัง กระนั้นการทำให้เป็นการเมืองของงานวิจัยซึ่งมีข้อจำกัดของการศึกษาถูกลดทอนลงและผลลัพธ์ที่เปลี่ยนแปลงไปให้เป็นเรื่องเล่าที่เรียบง่ายนั้นมีความเสี่ยงที่จะทำลายความน่าเชื่อถือของหลักฐานทางวิทยาศาสตร์ที่สามารถบอกกล่าวได้ถึงกระบวนการกำกับดูแลน้ำข้ามพรมแดนตลอดจนกระบวนการตัดสินใจ

ในลุ่มน้ำหลานซาง-แม่โขง การกำกับดูแลน้ำข้ามพรมแดนมีความซับซ้อนเนื่องจากผลประโยชน์ที่หลากหลายของผู้มีส่วนได้ส่วนเสียทั้งจากรัฐและไม่ใช่รัฐ​ สถาบันหลักที่สำคัญทั้งสองแห่งที่วางกรอบโครงสร้างเพื่อการกำกับดูแลน้ำข้ามแดนที่มีระหว่างรัฐต่อรัฐ (State-to-State) ได้แก่ คณะกรรมาธิการแม่น้ำโขง (The Mekong River Commission: MRC) และ กรอบความร่วมมือแม่โขง-หลานซาง (Mekong – Lancang Cooperation: MLC) เกี่ยวกับสาเหตุของกระแสน้ำไหลช้าและภัยแล้งในปี 2562 เดือนธันวาคม 2562  LMC และ MRC มุ่งมั่นที่จะทำการศึกษาวิจัยร่วมกันว่าสถานภาพของการศึกษานี้จะไม่ได้ถูกประกาศต่อสาธารณะ คณะกรรมาธิการแม่น้ำโขง เป็นองค์กรตามสนธิสัญญาที่ก่อตั้งขึ้นในปี 2538 ระหว่างกัมพูชา ลาว ไทยและเวียดนาม กับ จีนและเมียนมา ในฐานะคู่เจรจา กรอบความร่วมมือแม่โขง-หลานซาง เปิดตัวขึ้นครั้งแรกในเดือนมีนาคม 2559 และรวมทั้ง 6 ประเทศของกลุ่มลุ่มแม่น้ำหลานซาง-แม่โขง โดยจีนมีบทบาทสำคัญในฐานะประธานร่วมและนักลงทุน และการจัดการทรัพยากรน้ำเป็น 1 ใน 5 ประเด็นสำคัญที่จะต้องดำเนินการ ในเวลาเดียวกัน MRC และ LMC ได้ร่วมมือและแข่งขันกันในการมีอำนาจหน้าที่ บทบาท และการมีอิทธิพลในลุ่มแม่น้ำโขง - หลานซาง

ในช่วงตลอด 2 – 3 ปีที่ผ่านมา การเรียกร้องอันยาวนานจากประเทศท้ายน้ำ ภาคประชาสังคมและชุมชนที่มีต่อจีนเพื่อการแบ่งปันข้อมูลน้ำทวีความรุนแรงมากขึ้น ตั้งแต่ปี 2539 เป็นต้นมา จีนได้มีการแบ่งปันข้อมูลเฉพาะข้อมูลฤดูฝน (มิถุนายน – ตุลาคม) และบางครั้งบางคราวจะมีการให้ข้อมูลฤดูแล้ในช่วงเวลา ‘ฉุกเฉิน’ ตามที่นักวิชาการ สจวร์ต บิบา (Stuart Biba) กล่าวว่ามันเป็นมาตราการเฉพาะกิจเพื่อลดการวิพากษ์วิจารณ์​ ยิ่งไปกว่านั้น ข้อมูลที่ปล่อยออกมายังไม่สมบูรณ์เพียงพอที่จะสรุปได้อย่างชัดเจนถึงบทบาทของเขื่อนต้นน้ำที่มีบทบาทในการไหลของน้ำในแม่น้ำ ในบริบทของการวิพากษ์วิจารณ์ที่รุนแรงในช่วงปี 2563 ที่กล่าวถึงเมื่อตอนต้น ในวันที่ 22 ตุลาคม 2563 MRC ได้ประกาศว่าจีนได้ทำข้อตกลงที่จะแบ่งปันข้อมูลตลอดทั้งปี จำนวน 2 ครั้งต่อวัน สำหรับปริมาณน้ำฝนและระดับแม่น้ำจากสถานีวัดน้ำทั้ง 2 แห่งที่ตั้งอยู่ในเมืองม่านวาน (Manwan) และ จิงหง (Jinghong)

การเตรียมการใหม่สำหรับการแบ่งปันข้อมูลน้ำแบบรัฐต่อรัฐถือเป็นความก้าวหน้าที่สำคัญ รวมถึงการที่จีนได้เพิ่มความร่วมมือยิ่งขึ้นกับคณะกรรมาธิการแม่น้ำโขง ในการแบ่งปันข้อมูลมากกว่าการยืนกรานที่แบ่งปันข้อมูลผ่านกรอบความร่วมมือแม่โขง-หลานซาง อย่างไรก็ตาม ในแง่ของการแบ่งปันข้อมูลน้ำยังมีอีกมากที่ต้องทำเพื่อทำความเข้าใจสถานการณ์พื้นที่ต้นน้ำในประเทศจีน โดยเฉพาะอย่างยิ่งจำนวนสถานีตรวจวัดน้ำที่สามารถขยายให้ครอบคลุมเขื่อนไฟฟ้าพลังน้ำทั้งหมด 11 แห่ง ที่เปิดดำเนินการอยู่ในขณะนี้ และเพื่อการรวบรวมข้อมูลระดับน้ำทั้งพื้นที่ต้นน้ำและปลายน้ำ การไหลออกของอ่างเก็บน้ำแต่ละเขื่อนตลอดจนกำหนดการดำเนินการ นอกจากนี้ยังอาจรวมถึงข้อมูลน้ำในแม่น้ำสาขาซึ่งรวบรวมไว้อย่างครอบคลุม ในขณะที่การแบ่งปันชุดข้อมูลในอดีตสามารถช่วยสร้างเงื่อนไขก่อนหน้านี้ในลุ่มน้ำได้

อย่างไรก็ตาม สิ่งสำคัญคือต้องตระหนักว่ามีช่องว่างข้อมูลอื่นๆ อีกมากมายที่ต้องได้รับการแก้ไขในอ่างเก็บน้ำด้านล่าง ยกตัวอย่างเช่น จำเป็นที่จะต้องมีข้อมูลน้ำที่สมบูรณ์มากขึ้นเกี่ยวกับการดำเนินงานของโครงการสร้างเขื่อนในแม่น้ำสาขาที่มีผลต่อสภาวะน้ำท่วมและภัยแล้งทั้งในพื้นที่และสะสมตลอดทั้งลุ่มน้ำ สิ่งนี้ไม่ได้หมายถึงแต่เขื่อนไฟฟ้าพลังน้ำเพียงเท่านั้นแต่ยังรวมถึงแผนการชลประทานขนาดใหญ่ที่เพิ่มมากขึ้น นอกจากนี้ ยังมีความจำเป็นต้องมีการเปิดเผยข้อมูลต่อสาธารณะเกี่ยวกับผลกระทบของมาตราการบรรเทาความเสียหายที่เขื่อนไชยะบุรีที่เพิ่งสร้างเสร็จเมื่อเร็วๆนี้บนแม่น้ำสายหลักทางตอนเหนือของลาว เป็นสิ่งที่จำเป็น รวมทั้งการอพยพย้ายถิ่นของปลาและการเดินทางของตะกอน มีการริเริ่มโครงการภายใน MRC ตั้งแต่ปลายปี 2562 เพื่อศึกษาผลกระทบเหล่านี้ ในขณะที่องค์กรยังคงทำการรวบรวมข้อมูลอย่างมั่นใจแม้ว่าผลลัพธ์จะยังไม่เปิดเผยต่อสาธารณะก็ตาม การศึกษาเหล่านี้มีความจำเป็นอย่างเร่งด่วนในบริบทของ/และ ก่อนแผนการสำหรับโครงการกระแสหลักต่อไปซึ่งมี 4 โครงการที่กำลังได้รับการเสนออย่างจริงจัง การศึกษาเหล่านี้ยังสามารถช่วยอธิบายการเปลี่ยนแปลงของแม่น้ำที่ผิดปกติในรูปแบบอื่นๆ ที่เพิ่งสังเกตุได้ครั้งแรกในเดือนพฤศจิกายน 2562  และอีกหลายครั้งตั้งแต่นั้นเป็นต้นมา แม่น้ำโขงได้เปลี่ยนเป็นสีฟ้าน้ำทะเลในพื้นที่ของลาวและไทย ซึ่งโดยปกติแล้วจะเป็นสีน้ำตาลปนโคลน คณะกรรมาธิการแม่น้ำโขง ระบุว่าการสีที่เปลี่ยนนี้เกิดขึ้นจากการลดลงของปริมาณตะกอนและการเติบโตของสาหร่ายเนื่องจากการไหลของน้ำในแม่น้ำไหลต่ำ เป็นไปได้อย่างแน่นอนว่าการไหลของแม่น้ำในระดับต่ำและการเปลี่ยนแปลงของตะกอนจะเชื่อมต่อกับเขื่อนที่เพิ่งสร้างขึ้นมา

เมื่อวันที่ 13 พฤศจิกายน ปีนี้ คณะกรรมาธิการแม่น้ำโขง ได้ประกาศปรับปรุงเว็ปไซต์และ “ศูนย์รวมข้อมูล(Data Portal)” โดยมีเป้าหมายที่ระบุไว้คือ " (การ) ส่งเสริมความโปร่งใส เพิ่มการเข้าถึงข้อมูลและความรู้ที่เกี่ยวข้องกับแม่น้ำโขง" ตามข่าวประชาสัมพันธ์ของ คณะกรรมาธิการแม่น้ำโขงศูนย์รวมข้อมูลมีสิ่งพิมพ์มากกว่า 1,000 รายการโดย MRC เองและมากกว่า 10,000 ชุดข้อมูลเกี่ยวกับข้อมูลอนุกรมเวลาทางอุตุนิยมวิทยาทั้งในปัจจุบันและในอดีต แผนที่เชิงพื้นที่ แผนที่ ภาพถ่ายและชุดข้อมูลภาค ความพร้อมใช้งานของข้อมูลนี้จะเป็นทรัพยากรที่มีค่าสำหรับนักวิจัย รวมทั้งคณะกรรมาธิการแม่น้ำโขงก็เช่นกัน ในกลยุทธ์การสนับสนุนศูนย์รวมข้อมูลเน้นความสำคัญของข้อมูลดิบและการวิเคราะห์ผ่านการสร้างแบบจำลองและการพยากรณ์

ถึงกระนั้น ยังมีขั้นตอนสุดท้ายที่สำคัญที่จะต้องดำเนินการนั่นคือ การเชื่อมโยงความพร้อมใช้งานของข้อมูลน้ำที่ครอบคลุมมากขึ้นซึ่งสามารถเพิ่มความโปร่งใสในการปรับปรุงการกำกับดูแลน้ำข้ามแดนที่มีส่วนร่วมและรับผิดชอบต่อชุมชนที่อาศัยอยู่บนฝั่งแม่น้ำ ภาคประชาสังคมและสาธารณชนในวงกว้าง สิ่งนี้นำไปประยุกต์ใช้ในลุ่มน้ำตอนล่าง ยกตัวอย่างเช่น การปรึกษาหารืออย่างต่อเนื่องเกี่ยวกับเขื่อนหลักที่เสนอและเกี่ยวข้องกับการประกาศของจีนที่จะเพิ่มการแบ่งปันข้อมูลที่ยังไม่ได้เชื่อมโยงอย่างชัดเจนกับความมุ่งมั่นที่จะปรับปรุงความรับผิดชอบของโรงไฟฟ้าพลังน้ำแบบขั้นบันไดในแม่น้ำหลานซางไปยังประเทศปลายน้ำและชุมชนที่ตั้งอยู่ริมแม่น้ำ

สิ่งสำคัญคือต้องตระหนักว่าประเภทของความรู้ทางวิทยาศาสตร์ที่คิดค้นโดยคณะกรรมาธิการแม่น้ำโขงและนักวิจัยทางวิทยาศาสตร์เป็นเพียงรูปแบบเดียวของความรู้ที่จำเป็นสำหรับการพัฒนาที่ครอบคลุมและยั่งยืน การตั้งอยู่บนความรู้ของชุมชน เช่น งานวิจัย “ไทบ้าน” ซึ่งเป็นงานวิจัยที่นำโดยชุมชนตลอดจนรูปแบบความรู้ทางการเมืองและการปฏิบัติทุกเรื่องเพื่อให้ความรู้สามารถ “นำไปปฏิบัติได้” การเติบโตล่าสุดของ “การร่วมผลิตความรู้” หรือ “การวิจัยแบบสหวิทยาการ” สะท้อนให้เห็นถึงการยอมรับถึงการตัดเชื่อมต่อระหว่างความรู้ทางวิทยาศาสตร์ก่อนหน้าและผลกระทบต่อการกำกับดูแลสิ่งแวดล้อมที่ดีขึ้น การเรียกร้องให้มีการยอมรับมากขึ้นถึงความชอบธรรม คุณค่า จุดแข็งและข้อจำกัดของการผลิตความรู้ที่กว้างขึ้นและเพื่อความรับผิดชอบร่วมกัน ในบริบทของการข้ามพรมแดนแม่น้ำหลานซาง-แม่โขง สิ่งสำคัญคือ ผู้ที่ผลิตองค์ความรู้ที่หลากหลายต้องเป็นเครือข่าย มีการติดต่อสื่อสารและการปรึกษาหารือข้ามพรมแดน

การตั้งอยู่บนหลักการของการแบ่งปันความรู้และการสร้างสรรค์ร่วมกัน มีความจำเป็นที่จะต้องมีระบอบการปกครองที่อิงกฎเกณฑ์ที่ชัดเจนและเป็นสถาบันสำหรับลุ่มน้ำหลานซาง – แม่โขง ทั้งหมดซึ่งอยู่บนพื้นฐานของการสนทนาที่มีความหมาย ความสัมพันธ์และความไว้วางใจระหว่างรัฐกับชุมชนและภาคประชาสังคม อนุสัญญา Watercourses ของสหประชาชาติระบุหลักการและแนวปฏิบัติที่ดีสำหรับสิ่งนี้ รวมถึงวิธีการจัดการความซับซ้อนของความรู้และความไม่แน่นอนที่เกี่ยวข้องกับหลักการ “ห้ามทำให้เกิดอันตราย” และ “ข้อควรระวัง” โดยมุ่งเน้นไปที่การกำหนดแนวทางตามกฎเกณฑ์ในระดับประเทศและระดับข้ามแดนอันเป็นกลไกสำคัญที่ทำให้เกิดความรับผิดชอบและยังอยู่ในวิสัยทัศน์ที่เป็นทางเลือกสำหรับลุ่มแม่น้ำโขง-หลานซางที่จะสามารถสำรวจและพิจารณาอย่างจริงจังอีกด้วย

———

[1] ผู้อำนวยการศูนย์เชี่ยวชาญการเมืองเพื่อการพัฒนาสังคม ศูนย์ศึกษาการพัฒนาสังคม คณะรัฐศาสตร์จุฬาลงกรณ์มหาวิทยาลัย Email: Carl.Chulalongkorn@gmail.com

บทความนี้เผยแพร่ครั้งแรกบนเว็บไซต์ Heinrich-Böll-Stiftung Southeast Asia เมื่อวันที่ 27 พฤศจิกายน 2020 สามารถเข้าไปดูได้ที่ลิงค์ (link) นี้

CRITICAL NATURE: Beyond Water Data Sharing, Mekong-Lancang River Needs Accountable Water Governance

by Carl Middleton*

[Thai version available here]

The Mekong River seen from Vientiane, Laos (picture from Heinrich-Böll-Stiftung Southeast Asia).

The Mekong River seen from Vientiane, Laos (picture from Heinrich-Böll-Stiftung Southeast Asia).

In 2019, and again in 2020, the Mekong River – known as the Lancang River in China - has experienced low flows that has caused hardship for millions of people whose livelihoods depend on it.

An intense and often divisive regional debate has ensued about whether low flows are due to drought or the operation of large dams that have been progressively built across the basin since the early 1990s. Particular attention has been paid to the cascade of eleven hydropower dams on the mainstream in China, given the lack of transparency over the projects’ operation and reservoir water storage status.

In April 2020, the research consultancy Eyes on the Earth published a model of the natural (pre-dam) flow of the Lancang River to then predict the impact of the dams downstream in Northern Thailand. Given the absence of actual measurements in the public domain from gauging stations in China, the statistical model used satellite data to create a ‘wetness index’ to estimate the amount of water in the catchment, and then related this to monthly measurements of water levels at the gauging station in Chiang Saen in Northern Thailand. Overall, the study showed how since dams in the Lancang cascade began to be commissioned in the early 1990s there had been a decrease in wet season river levels and an increase in dry season levels, and more irregular and rapid fluctuations in water levels in both wet and dry seasons. These changes became especially pronounced since 2012 when the 5,850 MW Nouzhadu dam began reservoir filling, given that its reservoir is considerably larger than the preceding four projects combined.

While these conclusions have also been reached by previous scientific studies, the Eyes on Earth report gained significant media attention in regional and international outlets, as it was drawn upon by several civil society groups as well as representatives of the US Government to claim that it evidenced that China was responsible for the severity of the 2019-2020 drought and had “turned off the tap” or was “hoarding water”. These statements led in turn to rebuttals from China’s diplomats and researchers.

Such significant claims led to careful scrutiny of the Eyes on Earth report, including by the Mekong River Commission, AMPERES, and academics, that flagged some limitations including that: the report provides results in terms of water level, but this cannot be considered equivalent to water volumes; it didn’t demonstrate that China could store all of the water in the rainy season, hence being capable of fully withholding the river’s flow causing drought in the downstream; and it would have been better if the study had been peer reviewed before publication. Moreover, researchers at AMPERES concluded that the representation of the Eyes on Earth report in the public debate often went beyond its actual findings. In July 2020, researchers from Tsinghua University, a lead research institution in China, added to the debate with a study that argued the region had been experiencing drought. Again, AMPERES reviewing the study found that it too required further clarification and that the study’s conclusions on the benefits of the dam cascade in China to alleviate downstream drought conditions were potentially misleading.  

Overall, all existing studies on the impacts of China’s dam cascade on downstream countries are currently based on incomplete data due to a lack of access to already existing data. Moreover, the 2019 and 2020 droughts have occurred at a time of intensified geopolitics between the US and China in Southeast Asia and globally. In September 2020, the Mekong US Partnership was launched that has sought to deepen the relationship between downstream countries and the United States, and that has viewed China’s control of water resources in the upper basin with concern. Yet, the politicization of research – where the limitations of studies are downplayed and the results transformed into simplified narratives – risks undermining the credibility of scientific evidence that could inform processes of transboundary water governance and decision making.

In the Mekong-Lancang basin, transboundary water governance is complex given the diverse range of state and non-state actors’ interests. Two key intergovernmental institutions that structure state-to-state transboundary water governance are the Mekong River Commission (MRC) and the Lancang-Mekong Cooperation (LMC). The MRC is a treaty-based organization founded in 1995 between Cambodia, Laos, Thailand and Vietnam, with China and Myanmar as dialogue partners. The LMC was launched in March 2016 and includes all six states of the Mekong-Lancang basin, with a key role of China as co-chair and financier, and with water resources management as one of five priority areas. The MRC and LMC simultaneously cooperate and contest over their mandate, role and influence in the Mekong- Lancang River basin. Regarding the causes of the 2019 low flows and drought, in December 2019 the LMC and MRC committed to a joint study although the status of this study is not publicly announced.

Over the past couple of years, longstanding calls from downstream states, civil society and communities towards China for water data sharing have intensified. Since 1996, China had only shared rainy season data (from June to October), and occasionally dry season data at times ‘of emergency’ that according to the academic Stuart Biba was an ad hoc measure to deescalate criticism. Moreover, released data was not complete enough to conclusively determine the role that upstream dams had played in low river flows. In the context of the intense criticism during 2020 discussed above, on 22 October 2020 the MRC announced that China had agreed to share all-year around data twice per day for rainfall and river level from two monitoring stations at Manwan and Jinghong.

The new arrangement for state-to-state water data sharing is an important breakthrough, including given that China has deepened its cooperation with the MRC to share data rather than insist on sharing data via the LMC. However, in terms of water data sharing there is more to be done to understand the situation upstream in China. In particular, the number of monitoring stations could be expanded to cover all eleven hydropower dams now in operation and to include data on upstream and downstream water levels and flows for each dam’s reservoir as well as its operation schedule. It could also include tributary river water data, which is already extensively collected, while sharing historical data sets could help establish previous conditions in the basin.

Yet, it is important to recognize that there are numerous other data gaps that need to be addressed in the lower basin. For example, more complete water data on the operation of tributary projects is needed that influence flood and drought conditions both locally and cumulatively throughout the entire basin. This includes not only hydropower dams, but also a growing number of large irrigation schemes. The public release of data on the impact of mitigation measures at the recently completed Xayaburi Dam on the river’s mainstream in Northern Laos is also needed, including on migratory fish and sediment transportation. A project has been initiated within the MRC since late 2019 to study these impacts, while the company also certainly collects data, although results are not yet publicly available. These studies are urgently needed in the context of – and before - plans for further mainstream projects, four of which are currently being actively proposed. These studies could also help explain other unusual river changes recently observed given that first in November 2019, and several times since, the Mekong River has turned aqua-marine blue in areas of Laos and Thailand where usually it is a muddy brown. The MRC has stated that the color change is due to the drop in sediment load and subsequent algae growth due to low river flows. It is certainly possible that low river flows and sediment changes connect to the dams recently constructed.

On 13 November this year, the MRC announced its revamped website and ‘data portal’, with the stated goal of “promot[ing] transparency and increase[ing] access to Mekong related information and knowledge.” According to the MRC’s press release the data portal contains more than 1,000 publications by the MRC, and more than 10,000 datasets on current and historical hydrometeorological and climate time-series data, spatial maps, atlases, photographs, and sector datasets. The availability of this data will be a valuable resource for researchers. The MRC too in its underpinning strategy for the data portal emphasizes the importance of raw data and its analysis through modeling and forecasting.

Yet, there is a crucial final step to make, which is connecting more comprehensive water data availability that can increase transparency to improved transboundary water governance that is participatory and accountable to riparian communities, civil society and the wider public. This applies in the lower basin, for example within the ongoing consultations on proposed mainstream dams, and also in relation to China’s announcement to increase data sharing that is not yet explicitly connected to a commitment to improved accountability of the Lancang hydropower cascade to downstream countries and riverside communities.

It is important to recognize that the type of scientific knowledge generated by the MRC and scientific researchers is only one form of knowledge necessary for inclusive and sustainable development. Situated community-knowledge such as ‘Thai Bann’ research, civil society-led research, as well as political and practical forms of knowledge, all matter for knowledge to be “actionable”. The recent growth in “co-produced knowledge” or “transdisciplinary research” reflects acknowledges this recognition of the earlier disconnect between scientific knowledge and its impact on improved environmental governance.  It calls for greater recognition of the legitimacy, value, strengths and limitations of a broader range of knowledge production, and for its mutual accountability. In the context of the transboundary Mekong-Lancang River, it is also important that those producing diverse knowledge are networked, communicating and deliberating across borders.

Founded on knowledge sharing and co-creation, there is a need for a clear and institutionalized rules-based regime for the entire Lancang-Mekong basin that is based on meaningful dialogue, reciprocity and trust both between states and with communities and civil society. The UN Watercourses Convention outlines good principles and practices for this, including on how to manage knowledge complexity and related uncertainty drawing on the “do no harm” and “precautionary” principles. Focusing on establishing a rules-based approach at the national and transboundary scale is a vital mechanism through which accountability can occur, and also within which alternative visions for the Mekong-Lancang basin can be explored and seriously considered.

———

*Director, Center of Excellence in Resource Politics for Social Development, Center for Social Development Studies, Faculty of Political Science, Chulalongkorn University. Email: Carl.Chulalongkorn@gmail.com

This article was originally published on the Heinrich-Böll-Stiftung Southeast Asia website on 27 November 2020 at this link.

JOURNAL ARTICLE: Shaping ocean governance: a study of EU normative power on Thailand’s sustainable fisheries

Publication date: 22 June 2020

Publication: International Economics and Economic Policy

Authors: Ajaree Tavornmas, Kasira Cheeppensook

Abstract:

The European Union (EU) has been championing an agenda for better ocean governance based on a cross-sectoral, rules-based international approach and indicated its role as a strong global actor in this field. The EU, as reflected through its strategies adopted during the last decade (2005–2015), aims to shape international ocean governance on the basis of its experience in developing a sustainable and ethical approach to ocean management, notably through its environment policy and regulatory regime. This paper observes a significant transition of the EU internal policy towards a more externally-oriented one as well as its ambition in exporting the EU norms to third countries. It seems that the EU aims to lead this maritime and fisheries domain as a global actor, diffusing norms via interstate relations. The case study of EU policy towards Thailand fisheries policy, resulting in Thailand’s adopting sustainable fisheries policy in 2015 will be explored in this research paper. In addition, the paper aims to analyse the development and evolution of Thailand’s sustainable fisheries policy during 2015–2019 and to examine the rationales behind Thailand’s shift towards more environmentally and socially friendly fisheries policy. It focuses on how and in what ways Thailand as a third country has been influenced by the EU normative power in the maritime and fisheries domain and in particular, by the EU’s illegal, unreported and unregulated fishing (IUU) or “IUU Regulation” entered into force since 2010 as one of its main tools to promote ocean governance.

Keywords: Ocean governance, European Union (EU), Normative power, EU illegal, Unreported and unregulated fishing (IUU) regulation, Sustainability, Sustainable fisheries, Thailand

See the article here.

JOURNAL ARTICLE: The Salween River as a transboundary commons: Fragmented collective action, hybrid governance and power

journalarticle.png

Publication date: 28 July 2020

Publication: Asia Pacific Viewpoint

Authors: Diana Suhardiman, Carl Middleton

Abstract:

Viewing the Salween River as a transboundary commons, this paper illustrates how diverse state and non‐state actors and institutions in hybrid and multi‐scaled networks have influenced water governance in general, and large dam decision‐making processes in particular. Putting power relations at the centre of this analysis and drawing on the conceptual lenses of hybrid governance and critical institutionalism, we show the complexity of the fragmented processes through which decisions have been arrived at, and their implications. In the context of highly asymmetrical power relations throughout the basin, and the absence of an intergovernmental agreement to date, we argue that hybrid networks of state and non‐state actors could be strategically engaged to connect parallel and fragmented decision‐making landscapes with a goal of inclusively institutionalising the transboundary commons and maintaining connected local commons throughout the basin, foregrounding a concern for ecological and social justice.

Keywords: China, large hydropower dams, limited statehood, Myanmar, Thailand, water governance

See the article here.

CRITICAL NATURE: Are China’s dams on the Mekong causing downstream drought? The importance of scientific debate

by Marko Kallio* and Amy Fallon**

Xiaowan Dam in Nanjian County, Yunnan Province, Southwest China. Photo Credit: Guillaume Lacombe/Cirad

Xiaowan Dam in Nanjian County, Yunnan Province, Southwest China. Photo Credit: Guillaume Lacombe/Cirad

A recent report by Eyes on Earth (EoE)[i] highlighted the critical issue of China’s hydropower development and dam operation on the Lancang (upper Mekong) River and connected it to the ongoing drought in the lower Mekong basin. The report sparked numerous articles in regional and international news outlets[ii],[iii],[iv],[v], think tanks[vi], and online public discussion[vii]. Independent research groups and the Mekong River Commission (MRC) have questioned the EoE report’s methodology and its conclusions[viii],[ix], and called for increased cooperation between MRC member states and China.

Here, we outline some key scientific issues regarding the report and the assertions drawn from it, adding our own independent analysis of the EoE study, and suggest a constructive path forward based on the importance of data-sharing, rigorous peer review, and evidence-based democratized decision-making.

Evaluating the EoE report and considering its claims

The EoE report presents a statistical model to predict water level at the Chiang Saen monitoring station in Northern Thailand using a remotely sensed wetness index. It concludes that the 2019 lower Mekong drought was largely due to water being stored behind dams on the Lancang River in China, rather than an absolute shortage of water. Additional commentary on the report has gone further, and statements were made that China “entirely prevented the annual monsoon-driven rise in river level”.[vi]

The EoE report and subsequent commentary reveal key issues about the role of scientific research in sensitive and at times heated public discussions, such as the hydrological impacts of upstream dams on the lower Mekong River. That a public discussion is taking place on this crucial issue is positive, as there few forums to meaningfully discuss the impacts and ways forward, particularly for communities affected directly. But caution is also required on how science is drawn upon as a form of knowledge within such debates.

The commentary from the Stimson Center based on the EoE report does highlight a key issue that should be of public concern in downstream countries: the generation capacity of China’s upstream Mekong dams currently far exceeds China’s electricity demand[x], indicating there was likely potential for the release of water downstream to where it was needed during the drought, without undermining China’s domestic electricity security.  Yet, there are also several shortcomings in the EoE report itself and therefore the subsequent interpretation of it also hold policy implications.

A key limitation of the EoE report is that the authors’ analysis was based on water level, rather than water volume, giving only a partial picture of the situation on the Lancang River. This led to exaggerated claims that went beyond what could be justifiably concluded by the study – that the dam cascade withheld an entire monsoon season’s worth of rainfall. This was predominantly due to incomplete data access; the authors of the report had only obtained water level data from the MRC[viii],[ix], which limited the analysis to a simplified methodology based on this data and satellite imagery. The persistent data scarcity in the region significantly reduces the comprehensiveness of hydrological studies.

Such issues highlight the importance of acknowledging the study’s limitations, which is common practice in published scientific studies and helps avoid black-and-white conclusions, as seen in this case[ii],[vi]. The study’s methodological sturdiness also comes under question given the apparent lack of a rigorous peer-review process.  It is widely recognised that modelling reservoir operations is a difficult task in the absence of detailed data. During a recent panel discussion [vii] online with one of the report’s authors, peer-review of the method[xi] was mentioned, but it is difficult to substantiate such claims without a transparent scientific peer-review process (i.e. through publication in a scientific journal, or corroboration by multiple research groups) of the methodology for this particular purpose[xii].

A case for plural science

Curious about the conclusions reached in the EoE report and recognizing the high stakes within the subsequent public discussion, we wanted to critically scrutinize the report’s validity as would be conducted in an independent peer review process. Here, we briefly present our independent check to test the conclusion on Chinese dam operation – a discussion which is lacking in the report and related documents – and to demonstrate the usefulness of a wide range of model structures and input data.

The EoE report provides results in terms of water level, but this cannot be turned into water volume without a rating curve[xiii] at Chiang Saen. We therefore estimated runoff produced upstream of the Jinghong Dam – the last in the Lancang cascade – using a total of 26 freely and openly available runoff datasets[xiv]. Drawing on recent studies[xv], we estimated the Lancang cascade’s active storage capacity to be 25.6-27.1 km3.

Importantly, only two of the 26 datasets predict (on average) smaller runoff volume produced during the wet season than the Lancang cascade active storage capacity (Figure 1A).  The ensemble mean[xvi] of our estimates is 43.8 (+3.7/-3.6) km3, suggesting that the cascade can store 54-68% of the runoff produced in an average year. Figure 1B shows the cumulative sum of runoff produced in an average wet season. We can infer from this figure – assuming that all the active storage capacity was available at the start of the wet season and all incoming water was stored – that the cascade would be entirely filled sometime in July or August.

Figure 1) 26 independent estimates and the ensemble mean of A) the range of runoff produced upstream of Jinghong dam during rainy season, and B) the cumulative runoff produced during wet season. The active storage capacity of the Lancang cascade is …

Figure 1) 26 independent estimates and the ensemble mean of A) the range of runoff produced upstream of Jinghong dam during rainy season, and B) the cumulative runoff produced during wet season. The active storage capacity of the Lancang cascade is shown. The ensemble mean is highlighted. (Credit: the authors)

We consider our results robust: the annual runoff estimated by the ensemble mean, 53.2 (+5.1/-4.9) km3, is in line with Räsänen et al.[xvii], who estimate the annual inflow to Jinghong as 58 km3 (1840 m3 s-1). We also find good correspondence when comparing to the observed streamflow at Chiang Saen during a natural flow regime (1960-1990). Our method estimates wet season runoff at Chiang Saen as 65.9 (+5.8/-5.0) km3, and annual runoff 79.6 (+7.3/-6.9) km3, while observed streamflow is 64.7 (+3.9/-4.0) km3 and 85.5 (+4.0/-4.5) km3, respectively.

By changing the research question and designing a methodology to address this question under data scarcity, we arrive at an opposite conclusion from the discussed reports – it seems likely that the upper Mekong Basin experienced drought-like conditions. If we accept the presented evidence showing the reservoirs at a high water level at the start of the 2019 wet season[ii],[vii], the Lancang cascade in China would have been overwhelmed by the inflowing water of an average wet season and would not have been able to prevent the flood pulse at Chiang Saen.

It should be noted that our approach, like the discussed EoE report, arises from incomplete data availability, and as a simple bucket model does not consider dam operations, transmission losses or water withdrawals. To further the debate, we make our code available for public review in GitHub[xviii]. However, an ensemble approach, like the one presented here, can facilitate discussion about modelling beyond questions looking for simple conclusions, and acknowledging multiple ways to overcome challenges[xix] inherent in hydrological modelling.

What can we do to address these shortfalls?

The issues we have highlighted here demonstrate the need for a constructive path forward, for which we propose four suggestions. First, open data-sharing is critical for comprehensive hydrological modelling of the Mekong. Without this, it is impossible to gain a true understanding of what is occurring across the basin, and opens the process up for unconstructive politicization and the closing of potential channels of dialogue[xx]. Unfortunately, China’s persistent lack of data-sharing with downstream countries, despite many assurances and invitations to share data[xxi], means that at the present time only such incomplete assessments of the impact of the upper dam cascade are possible. Thus, regardless of the shortcomings of research findings, China’s lack of transparency has brought about assumptions of dishonesty regarding its lack of release of water to downstream Mekong countries during the 2019 drought. In terms of data sharing, the ball is firmly in China’s court to act upon it.

Second, we emphasise the need for objective, credible science, particularly in such complex settings where there is a diverse range of perspectives, knowledge and agendas. From a hydrological modelling perspective, this can be achieved using a range of different model structures and assumptions which account for a wide range of plausible outcomes. This arises from acknowledging that there is no such thing as a ‘perfect’ model, and therefore uncertainty needs to be clearly communicated. Credibility of modelling can only be verified through a rigorous peer-review process and with the use of comprehensive model evaluation frameworks. Such frameworks acknowledge modelling as a social process[xxii], not merely a technical one.

Following from this is the need for a plurality of perspectives both within the scientific community across disciplines, and across society, as water resource sharing in the Mekong is debated. For example, increased inclusion of Chinese researchers would be highly beneficial, not just from a knowledge-perspective in ensuring rigorous debate, but also a diplomatic one to ensure that there is broad agreement – and constructive contestation - on how the analysis unfolds. Furthermore, when the intrinsically plural nature of knowledge is recognised, scientific advice can become more robust and democratically accountable[xxiii]. For this, we must also ensure research is inclusive of both physical and social sciences, and community knowledge.

Finally, research should be used as a catalyst for science-based policy discussions in the public domain, rather than the means toward a definitive answer that shuts down conversation. Despite their shortfalls, the EoE and Stimson reports have certainly achieved this. We, however, caution the oversimplification of findings in facilitating such discussion, to not undermine the credibility of science within public discourse.

Overall, we hope to see dialogue that is not one-way from ‘experts’ to the public, but rather an iterative process that encourages democratic debate. This requires a certain level of humility, both on the part of scientists and policymakers.

Concluding Remarks

The report from EoE and associated public discussion have connected China’s cascade of dams to the ongoing drought in the Mekong Region, and highlighted the role - and responsibilities - of scientists in untangling the complex web of environmental issues along the Mekong River.

As our analysis and commentary of others[viii],[ix] have demonstrated, there are weaknesses in the methodology used that undermine the claims that China completely held back the 2019 wet season flow. Our analysis suggests that it is improbable that China’s dam cascade can store an entire wet season’s worth of rainfall, and subsequently be the primary cause of the 2019 drought. But we agree that China could have alleviated the drought conditions by releasing more water from the reservoirs, even as it would be at China’s cost of sacrificing part of its underutilized electricity generation potential.

We therefore suggest a constructive path forward: (1) increase public availability of data which, (2) informs a wide range of rigorously-debated scientific studies across disciplines – an example of which we have provided here. (3) The subsequent scientific debates should be accountable to and informed by the needs of multiple groups across society, including communities and states. (4) Encourage and support evidence-based and democratized decision-making. Only through this can we hope to achieve cooperative and equitable sharing of water resources along the Mekong River.

Acknowledgment

We would like to thank Rajesh Daniel and Carl Middleton for their helpful comments and editorial review of this article.

—-

[i] Basist, A., and C. Williams. 2020. ‘Monitoring the Quantity of Water Flowing Through the Upper Mekong Basin Under Natural (Unimpeded) Conditions’. Sustainable Infrastructure Partnership, Bangkok.

[ii] Eyler, B. 2020. ‘Science Shows Chinese Dams Are Devastating the Mekong’. Foreign Policy (blog). 22 April 2020. https://foreignpolicy.com/2020/04/22/science-shows-chinese-dams-devastating-mekong-river/.

[iii] Beech, H. 2020. ‘China Limited the Mekong’s Flow. Other Countries Suffered a Drought.’ The New York Times, 13 April 2020, sec. World. https://www.nytimes.com/2020/04/13/world/asia/china-mekong-drought.html.

[iv] Reuters. 2020a. ‘Chinese Dams Held Back Mekong Waters during Drought, Study Finds’, 13 April 2020. https://www.reuters.com/article/us-mekong-river-idUSKCN21V0U7.

[v] Reuters. 2020b. ‘Mekong River Groups Urge China to Show Transparency after Dam Report’, 15 April 2020. https://www.reuters.com/article/us-mekong-river-idUSKCN21X1LG.

[vi] Eyler, B. and Weatherby, C. 2020. ‘New Evidence: How China Turned off the Tap on the Mekong River’. The Stimson Center. https://www.stimson.org/2020/new-evidence-how-china-turned-off-the-mekong-tap/.

[vii]  Foreign Correspondent’s Club Thailand. 2020. ‘Mekong Update: New Evidence of China’s Dam Impacts, and Why It Matters | FCCThai’. 23 April 2020. https://www.fccthai.com/events/mekong-update-new-evidence-of-chinas-dam-impacts-and-why-it-matters/. Available at: https://www.youtube.com/watch?v=5YXLz4V-JbY

[viii] Ketelsen, T., J. Sawdon, and T. A. Räsänen. 2020. ‘Monitoring the Quantity of Water Flowing through the Upper Mekong Basin under Natural (Unimpeded) Conditions - Rapid Review’. Ho Chi Minh City, AMPERES. https://www.amperes.com.au/s/AMPERES-Review_Basist-et-al_Lancang-flows-19-April-2020.pdf.

[ix] Mekong River Commission. 2020. ‘Understanding the Mekong River’s Hydrological Conditions: A Brief Commentary Note on the “Monitoring the Quantity of Water Flowing the Upper Mekong Basin Under Natural (Unimpeded) Conditions” by Alan Basist and Claude Williams (2020)’. Mekong River Commission.

[x] Magee, D. and Hennig, T. 2017.  ‘Hydropower Boom in China and along Asia’s Rivers Outpaces Regional Electricity Demand’. The Third Pole. https://www.thethirdpole.net/en/2017/04/28/hydropower-boom-in-china-and-along-asias-rivers-outpaces-regional-electricity-demand/.

[xi] The peer-review likely refers to: Basist, A., Williams, C., Ross, T.F., Menne, M.J., Grody, N., Ferraro, R., Shen, S. and Chang, A.T.C. 2001. ‘Using the Special Sensor Microwave Imager to Monitor Surface Wetness’. Journal of Hydrometeorology 2 (3): 297–308.

[xii] The purpose of monitoring dam operations.

[xiii] A rating curve is a mathematical model (equation) which describes the relationship between water level and discharge.

[xiv] We used 24 different combinations of Global Hydrological Models and reanalysis climate forcing datasets available from the Intersectoral Impact Model Intercomparison Project. These are generally uncalibrated model runs, so we complemented them with two global runoff products optimized with streamflow records: LORA and GRUN. For ISIMIP data, refer to Gosling, Simon, Hannes Müller Schmied, Richard Betts, Jinfeng Chang, Philippe Ciais, Rutger Dankers, Petra Döll, et al. 2017. ‘ISIMIP2a Simulation Data from Water (Global) Sector’. GFZ Data Services. https://doi.org/10.5880/pik.2017.010, for LORA refer to Hobeichi, Sanaa, Gab Abramowitz, Jason Evans, and Hylke E. Beck. 2019. ‘Linear Optimal Runoff Aggregate (LORA): A Global Gridded Synthesis Runoff Product’. Hydrology and Earth System Sciences 23 (2): 851–70. https://doi.org/10.5194/hess-23-851-2019,  and for GRUN, refer to Ghiggi, Gionata, Vincent Humphrey, Sonia I. Seneviratne, and Lukas Gudmundsson. 2019. ‘GRUN: An Observations-Based Global Gridded Runoff Dataset from 1902 to 2014’. Earth System Science Data, March, 1–32. https://doi.org/10.5194/essd-11-1655-2019.    

[xv] Total storage capacity 46.4 km3 was obtained from the WLE Greater Mekong Dam Observatory. We estimated the active storage by computing the ratio of total-to-active storage ratio from available values in Table 1 in Räsänen et al. (2017), and multiplying the total storage with the ratio 0.584 for higher, and 0.551 for lower estimate. Active storage capacity refers to the volume which is available for dam operators to work with. Dam data from Mekong Region Futures Institute. 2020. ‘Dataset on the Dams of the Greater Mekong’. Mekong Region Futures Institute, Bangkok. Active storage ratio from Räsänen, Timo A., Paradis Someth, Hannu Lauri, Jorma Koponen, Juha Sarkkula, and Matti Kummu. 2017. ‘Observed River Discharge Changes Due to Hydropower Operations in the Upper Mekong Basin’. Journal of Hydrology 545 (February): 28–41. https://doi.org/10.1016/j.jhydrol.2016.12.023.

[xvi] An ensemble mean is the average of a collection of many estimates. Here it refers to the average value of  combining all of the 26 individual estimates.

[xvii] Räsänen, Timo A., Jorma Koponen, Hannu Lauri, and Matti Kummu. 2012. ‘Downstream Hydrological Impacts of Hydropower Development in the Upper Mekong Basin’. Water Resources Management 26 (12): 3495–3513. https://doi.org/10.1007/s11269-012-0087-0.

[xviii] https://github.com/mkkallio/Upper_Mekong_capacity_check

[xix] See e.g. Seibert, Jan, and H. J. (Ilja) van Meerveld. 2016. ‘Hydrological Change Modeling: Challenges and Opportunities’. Hydrological Processes 30 (26): 4966–71. https://doi.org/10.1002/hyp.10999, Fatichi, Simone, Enrique R. Vivoni, Fred L. Ogden, Valeriy Y. Ivanov, Benjamin Mirus, David Gochis, Charles W. Downer, et al. 2016. ‘An Overview of Current Applications, Challenges, and Future Trends in Distributed Process-Based Models in Hydrology’. Journal of Hydrology 537 (June): 45–60. https://doi.org/10.1016/j.jhydrol.2016.03.026 or Blair, P, and W Buytaert. 2016. ‘Socio-Hydrological Modelling: A Review Asking “Why, What and How?”’ Hydrol. Earth Syst. Sci 20: 443–478. https://doi.org/10.5194/hess-20-443-2016.

[xx] Pielke Jr., Roger A. 2007. ‘The Honest Broker: Making Sense of Science in Policy and Politics’. Cambridge Core. Cambridge University Press. April 2007. https://doi.org/10.1017/CBO9780511818110.

[xxi] See e.g. Biba, Sebastian. 2018. China’s Hydro-Politics in the Mekong : Conflict and Cooperation in Light of Securitization Theory. Routledge. https://doi.org/10.4324/9781315148663.

[xxii] See e.g. Hamilton, Serena H., Baihua Fu, Joseph H. A. Guillaume, Jennifer Badham, Sondoss Elsawah, Patricia Gober, Randall J. Hunt, et al. 2019. ‘A Framework for Characterising and Evaluating the Effectiveness of Environmental Modelling’. Environmental Modelling & Software 118 (August): 83–98. https://doi.org/10.1016/j.envsoft.2019.04.008.

[xxiii] Stirling, Andy. 2010. ‘Keep It Complex’. Nature 468 (7327): 1029–31. https://doi.org/10.1038/4681029a.

—-

Author Bio:

*Marko Kallio is working at Aalto University doing multidisciplinary research about water scarcity estimation in data scarce areas with a background in environmental engineering (water management, B.Sc.) and geoinformatics (spatial analysis, cartography, M.Sc.). He has been working in the Mekong Region in various projects as a modeller in hydrology and renewable energy, both as a consultant and as a researcher. Drawing from his experience in hydrological modelling and research, he has come to the conclusion that hydrological modelling is hard. This realization led to one of Marko’s main research interests – bridging the gap between modellers and consumers of the outputs of their models. For the past few years, he has developed intuitive methods for utilizing freely and openly available hydrological information in areas where data is scarce – like the Mekong Region. Marko has frequently visited the area in the past years and hopes his research can help in ensuring a sustainable future for the whole region. (Email: marko.k.kallio@aalto.fi).

**Amy Fallon is a researcher at Aalto University’s Water and Development Research Group. She has a BSc. in Environmental Sciences and an MSc. in Water Security and International Development. Her doctoral thesis focuses on resilience-based approaches to water governance in dynamic river basins undergoing significant social and ecological transformations. Using case studies from South Africa and Cambodia, her research highlights the importance of considering non-linear dynamics and uncertainty, as well as the role of politics and power, in decision-making processes. Her most recent work on Cambodia’s Tonle Sap Lake uses critical institutionalism to take a more critical perspective on resilience, focusing on the question ‘resilience for whom?’. Amy is interested in environmental justice, and the use of science to advocate for the most marginalised groups of society who are frequently the most impacted by environmental issues. (Email: amy.fallon@aalto.fi).

REPORT: Contested Knowledges of the Commons in Southeast Asia Research Progress report - Vignettes from the Field (CRISEA Working Paper 2)

criseawp2.png

Publication date:
March 2020

Publication:
Contested Knowledges of the Commons in Southeast Asia Research Progress report - Vignettes from the Field

Edited and compiled:
Carl Middleton

Authors:
Monika Arnez, Sally Beckenham, David Chu, Robert A. Farnan, Tomasz Kamiński, Carl Middleton, Edyta Roszko, Thianchai Surimas, Amnuayvit Thitibordin, Andrea Valente, Michał Zaręba

Download the report here.

Historically until the present day, wide-ranging forms, scopes, intensities and durations of resource politics have shaped the concept and practice of development across Southeast Asia. In this report, we present eight vignettes that offer a sample of some of the varying characteristics of these resource politics and their implications for competition over resources and the commons, and social justice. The vignettes are the interim products of multidisciplinary research – and in one case transdisciplinary research - that is ongoing by team members of ‘Work Package 1 on the Environment’ of the EU-funded project Competing Regional Integrations in Southeast Asia (CRISEA).[1] 

In our first Working Paper, published in March 2019, we detailed our Work Package’s theoretical framework.[2] The core of the shared conceptual approach of our research is an examination of the co-production of ecological knowledge and ecological governance, viewed across the global, national and local scales. Here we draw upon the foundational work of Sheila Jasanoff (2004)[3], and as applied in Southeast Asia more recently by Gururani and Vandergeest (2014)[4] amongst others, to understand the remaking of nature-society relations in Southeast Asia. In short, as stated by Jasanoff (2004:2) “… co-production is shorthand for the proposition that the ways in which we know and represent the world (both nature and society) are inseparable from the ways in which we choose to live in it”. The co-production of natural and social orders are thus mediated by the production, circulation, integration and dissemination of knowledge, which itself must be contextualized to historical context, power relations, and culture.

The purpose of this Working Paper is to offer empirically grounded case studies of resource politics in practice in the region, as a work-in-progress. Overall, the research projects address three overarching themes: Transition into a low-carbon economy (Kamiński); Sea (Arnez; Roszko); and Rivers (Beckenham and Farnan; Chu; Middleton and Surimas; Thitibordin; Zaręba). We seek to analyze these cases through our project’s conceptual lens to generate both academic insight and policy-relevant recommendations, which will be the subject of forthcoming publications.

Please contact Dr. Carl Middleton for more information.

Citation: Arnez, M., Beckenham, S., Chu, D., Farnan, R.A., Kamiński, T., Middleton, C., Roszko, E., Surimas, T., Valente, A., and Zaręba, M. (2020) The Environment - Contested Knowledge of the Commons in Southeast Asia (CRISEA Working Paper 2). Research Progress report - Vignettes from the Field (CRISEA) Working Paper No. 2 (March 2020).

This report is part of our project The Contested Meanings of the Mekong River in Northern Thailand. You can visit the project page here.

——

[1] See http://crisea.eu/ for further details

[2] Kamiński, T., Arnez, M., Middleton, C., Beckenham, S., Farnan, R.A., Chu, D., Roszko, E., Thitibordin, A., Valente, A., and Zaręba, M. (2019) The Environment - Contested Knowledge of the Commons in Southeast Asia (CRISEA Working Paper 1). Competing Regional Integrations in Southeast Asia (CRISEA) Working Paper No. 1 (March 2019).

[3] Jasanoff, S. (2004). States of Knowledge: The Co-Production of Science and Social Order. London: Routledge

[4] Gururani, S. & P. Vandergeest (2014). ‘Introduction: New Frontiers of Ecological Knowledge: Co-producing Knowledge and Governance in Asia.’ Conservation and Society 12(4): 343-351.

ธรรมชาติเชิงวิพากษ์: การจัดการภัยแล้งและการเปลี่ยนแปลงสภาพภูมิอากาศในแม่น้ำล้านช้าง-แม่โขง โดยแนวทางใหม่บนพื้นฐานธรรมชาติ

เรื่องโดย คาร์ล มิดเดิลตัน*

[English version available here]

MEKONG RIVER (c) CARL MIDDLETON

MEKONG RIVER (c) CARL MIDDLETON

ปัจจุบันภูมิภาคลุ่มแม่น้ำโขงกำลังเผชิญกับภัยแล้งอย่างรุนแรง แม้ว่าเหลืออีกเพียง 3 เดือนจะเข้าสู่ฤดูฝนแต่ระดับน้ำในลุ่มแม่น้ำล้านช้าง-แม่โขงกลับลดระดับลงต่ำจนสันดอนทรายและโขดหินโผล่ออกมาอย่างเห็นได้ชัดเจนตลอดตามแนวแม่น้ำ ภัยแล้งได้ทำให้เกิดผลกระทบและความเสี่ยงต่อระบบนิเวศ การประมงและการเกษตร ความมั่นคงทางอาหาร วิถีการดำเนินชีวิตและแม้แต่การจัดหาน้ำเพื่อการอุปโภคบริโภค สำหรับผู้คนนับล้านที่วิถีชีวิตต้องพึ่งพาทรัพยากรจากแม่น้ำนั้นภัยแล้งคือมหันตภัยที่ก่อให้เกิดความยากลำบากในชีวิตอย่างรุนแรงผนวกกับการระบาดของเชื้อไวรัสโควิด-19 ที่กำลังเกิดขึ้นอยู่นี้ทำให้เพิ่มความท้าทายในการดำเนินชีวิตของพวกเขามากขึ้น

คลิ๊กที่นี่เพื่อดาวน์โหลดเอกสารฉบับเต็มในรูปแบบ PDF

*สังกัด: ศูนย์เชี่ยวชาญเฉพาะทางด้านการเมืองทรัพยากรเพื่อการพัฒนาสังคม, ศูนย์ศึกษาเพื่อการพัฒนาสังคม คณะรัฐศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

CRITICAL NATURE: Addressing Drought and Climate Change on the Lancang-Mekong River Needs New and Nature-based Solutions

By Carl Middleton[i]

[Thai version available here]

Mekong River Carl Middleton

Mekong River Carl Middleton

Introduction

The Mekong Region is currently facing a serious drought. Despite there being possibly three months until the next rainy season, the Lancang-Mekong River is already extremely low, with sand bars and rocky outcrops exposed along many stretches of the river. The drought places at risk ecosystems, fishing and farming livelihoods, wider food security, and even drinking water supply. For the millions whose livelihoods depend upon the river’s resources, the drought is creating severe hardship - compounded now further by the COVID-19 pandemic. 

The current drought is in fact the continuation of last year’s drought, which was already the worst in living memory.[ii] The delayed monsoon finally arrived in July, but then finished early and failed to fully replenish water sources. The drought’s intensity is further amplified by the El Niño weather pattern, which has raised temperatures and rates of evapotranspiration.[iii] The extent to which climate change is nowadays acting upon the basin is also an increasingly debated question[iv], and the subject of a growing number of studies.[v]

It has also been vigorously debated whether large dam infrastructure in the basin has exacerbated the impact of the drought, or could have been operated differently to better mitigate its impacts. A particular focus has been on the upstream dams in China, where eleven projects have been progressively built on the Lancang (upper-Mekong) River mainstream since the early 1990s.  This is because a significant proportion of the river’s dry-season flow originates from China, from the glacial melt of the river’s headwaters in the Tibetan Plateau, and more recently due to the significant reservoir storage now in place.

As the impacts of climate change deepen, severe drought threatens to become a part of the ‘new normal.’ The challenge of equitably ensuring water, food and energy security for all underscores the importance of improving - and rethinking - water governance and drought adaptation in the basin in the context of climate change.

Anticipated impacts of climate change

The Lancang-Mekong River is one of the world’s major river basins, and is second only to the Amazon in terms of biodiversity. Measuring 4,800 kilometers along the mainstem, it traverses China, Myanmar, Laos, Thailand, Cambodia and Vietnam. 72 million people live within the basin, and for a majority access to river resources remain central to livelihoods.  The river was largely free-flowing until the early 1990s, but nowadays it’s seasonal cycle of monsoon flooding and dry-season low flows are shaped by extensive hydropower dam operation.[vi]

According to UN-Water, “Water is the primary medium through which we will feel the effects of climate change.”[vii] In the Mekong region, anticipated and already occurring changes to the climate and hydrology, as well as sea-level rise, are increasingly center to public debates and policy concerns. Whilst there is always uncertainty in making predictions on climate change, the best available analysis anticipates weather change including a mean temperature rise of 0.2 oC per decade, a regional increase in annual precipitation of 200 mm, more regular severe floods and droughts, and greater seasonal uncertainty. Meanwhile, sea level rise will increasingly threaten the low-lying delta area.[viii]

Climate change trends, however, need to be considered in the context of existing challenges within the basin. These include the changing flow regime and reduced sediment loads due to extensive dam construction, loss of wetlands and degrading riverine ecosystems, and weaknesses in transboundary water governance including incomplete water data sharing and the accountability of river-related decision-making – especially related to large hydropower dams [ix]. Climate change will intersect with and amplify these challenges[x], posing risks to terrestrial and aquatic ecosystems, agriculture and fisheries, livelihoods and food security, as well as national economic growth, especially under drier climate scenarios.[xi]

For example, the delta area in Vietnam is at risk from sea-level rise, a risk that is further heightened by the reduced sediment load of the river due to dam construction and sand mining, and even the changing patterns of tropical cyclones, which have until now washed more sediment into the delta to replenish it, but that could be undermined by climate change if the tracks of tropical cyclones shift north and eastwards as anticipated.[xii] It is also reported that groundwater extraction for agriculture is causing the delta to sink.[xiii] The risk to food security, local livelihoods, and national economy are significant, given that the Mekong Delta in Vietnam produces half of the country’s rice production, sixty percent of the shrimp harvest, and eighty percent of the fruit crop.[xiv] This has led some to identify the initial stages of environmental-driven migration from the Delta.[xv]

Implications for hydropower in the Lancang-Mekong basin

The construction of hydropower dams in the Lancang-Mekong basin has been controversial for decades, including whether such projects can be considered sustainable given the environmental and social impacts that typically accompany them. Climate change brings an additional dimension to this already vigorous debate. Proponents argue that hydropower dams are an appropriate mitigation strategy due to their reduced carbon emissions.[xvi] However, recent research in the Mekong Region concluded that, due to methane emissions from reservoirs “…hydropower in the Mekong Region cannot be considered categorically as low-emission energy.”[xvii] The authors add “… the GHG [Greenhouse gas] emissions of hydropower should be carefully considered case-by-case together with the other impacts on the natural and social environment.”

One fundamental question is whether more hydropower projects are needed to meet electricity demand. In Thailand, which is the main electricity market for hydropower from Laos, the peak demand was 30,853 MW in May 2019[xviii], whilst the total installed capacity as of January 2020 is 45,313 MW.[xix] Imported hydropower from Laos constitutes 3,954 MW, which Thailand’s power planners consider to contribute relatively low price and flexible capacity to Thailand’s grid for meeting peak power demands.[xx] However, comparing current electricity demand with overall capacity, Thailand has a very high reserve margin of 47 percent, which is three times a typical reserve margin of 15 percent. In China too, there is increasingly a challenge of oversupply of electricity due to the past significant investment in generation capacity and the recent shifts in structure of its economy.[xxi]

While in other countries of the region there remains electricity demand to be met in both urban and rural areas, a second question is whether there are nowadays better ways to meet this remaining demand. The current approach to meeting demand remains predominantly new supply generated by large-scale coal-fired and gas-fired power stations, or large hydropower dams. There are, however, a growing number of initiatives towards decentralized renewable electricity, energy efficiency and demand side management that are disrupting business-as-usual. These include, for example, technologies such as ‘block chain solar power’ and decentralized smart grids or microgrids, new practices such as ‘energy service companies,’ and new modes of financing.[xxii]

A third important question is how climate change will affect the operation of hydropower. The Mekong River Commission (MRC), in a recent report, suggest that under wetter climate scenarios, there would be a greater potential for hydropower generation.[xxiii] At the same time, they flag that the issue of spillway design and dam safety, which could place downstream areas at risk, still requires further assessment. This is a salient challenge in the Mekong Region, given the recent Xe Pian Xe Namnoi dam collapse in July 2018, which displaced over 6,600 people and, according to official figures left 40 people dead and 31 people missing.[xxiv] Meanwhile, extreme dry periods could reduce the dependable generation capacity of hydropower, which would require additional investment for back-up capacity; one option suggested by the MRC is floating solar PV on the reservoir surface, although this would effectively increase the cost of hydropower.

A fourth important question in the context of climate change is whether large dams might mitigate extreme flood and drought. Regarding the hydropower projects on the Lancang River[xxv] in China, in recent years there have been some ‘emergency water releases’ intended to mitigate drought.  In March 2016, for example, shortly before the region’s leaders committed to the Lancang Mekong Cooperation framework, China released water from the Lancang dams stated as a show of goodwill in an effort to alleviate the severe drought in the Lower Mekong basin at that time, although unfortunately the water releases caught some downstream communities unaware.[xxvi]

Yet, the opposite has also occurred, namely that dam operation has exacerbated drought. During the last drought (in July 2019) and the current one[xxvii], operation of the Jinghong Dam – the lowest in China’s Lancang cascade - has on occasion led to significant reductions in river water flow and abnormal fluctuations. Flow reductions were claimed to be necessary due to maintenance at the project. The MRC reported that water levels dropped on the river by up to one meter in Thailand and Laos from 27 December 2019 to 4 January 2020.[xxviii] As agreed by Memorandum of Understanding[xxix], China had sent notification via the MRC on 31 December, which stated water outflows would drop by 50 percent affecting river water levels in Thailand, Lao PDR and Cambodia[xxx]. However, these notifications often arrive to the MRC with little time to spare, and the system to disseminate the information amongst communities is still ineffective.

Acknowledging the impacts on livelihoods, the Thai Government recently publicly stated it would raise the severe impact of the drought within the MRC, including in the context of the upstream dam operation that is received with insufficient notice. This could be read as a significant rebuke given that downstream countries are typically cautious in their regional diplomacy towards China.[xxxi] Indeed, there may be a broader shifting of position, given that Thailand recently also cancelled long-standing joint plans with China for rapid’s blasting of the river’s upper stretch intended to facilitate the navigation by large trading boats.[xxxii] 

Regarding tributary hydropower projects in Laos, there is less available analysis. The MRC, however, has flagged that as most large projects being constructed are under Build-Operate-Transfer (BOT) contracts, they are locked into take-or-pay electricity contracts. As such, their potential to be operated as multi-purpose projects that could contribute to extreme flood or drought mitigation could be limited as electricity production is to be prioritized.[xxxiii]

Responses by regional institutions

The Mekong River Commission (MRC) is an intergovernmental river basin commission established by international treaty in 1995.[xxxiv] Climate change has become an increasingly significant element of its work that cumulated with the publication of a Mekong Climate Change Adaptation Strategy and Action Plan (MASAP) in November 2017.[xxxv] In its State of the Basin Report 2018 (published in late 2019), the impacts of climate change are one of five critical dimensions that constitute its basin monitoring framework.[xxxvi] Various other studies have also been published relevant to climate change adaptation, including on flooding[xxxvii], the impacts of climate change on hydropower production (mentioned above) [xxxviii], and a drought management strategy published in November 2019.[xxxix] The MRC also gathers data on river flow, water quality and sediment transport that are important for understanding climate change.

Whilst these assessments and regional plans contain important analysis, and the MRC’s role is to facilitate a regional plan for adaptation to climate change, various long-standing challenges for the MRC remain. These include its ability to influence national plans, its accountability to communities and civil society, and its relationship with China that is a dialogue partner rather than full member state.

In March 2016, the region’s leaders launched the Lancang-Mekong Cooperation (LMC) in Sanya City of Hainan Province, China. Two years later, in Phnom Penh, Cambodia, a Five-Year Plan of Action on Lancang-Mekong Cooperation (2018-2022) was announced that signified the deepening institutionalization of the LMC. Regarding water resources, it includes commitments to inter-governmental cooperation and its institutionalization, as well as technical cooperation and joint research including on the impacts of climate change. Whilst the details are not in the public domain, there is a stated acknowledgement of the need to “Deepen Lancang-Mekong river flood and drought disaster emergency management, carry out joint assessment of flood control and drought relief in Mekong basin, and carry out joint study on the early setting up of communication line/channel for sharing information in emergency case of flood and drought in Lancang-Mekong river.” [xl]

The LMC is a new significant intergovernmental cooperation given that it brings together all six countries that share the Lancang-Mekong basin. However, it also raises challenges for transboundary water governance, including on: the extent to which crucial water data is shared; the LMC’s transparency and accountability to civil society and riparian communities; whether LMC plans for the Lancang-Mekong River adequately consider the environmental and social values of the river; and how the LMC intends to cooperate with the MRC.

On the latter point, in December 2019, the MRC Secretariat and the Lancang-Mekong Water Resources Cooperation Center of the LMC signed a new MoU. Whilst it does not fully resolve underlying tensions in competing mandates and approaches between the two regional organizations, it signals an intent to cooperate on various technical areas including: data and information exchange, basin monitoring, and joint assessment and study.[xli]

A first step will be to “to conduct a joint research on the 2019 drought and low flow situation in the Mekong River basin… to be completed by September 2020.”[xlii] This is clearly a significant study. However, in the context of the past impacts of China’s dam operation on Northern Thailand impacting farmers and fishers it is also likely to be a contentious one. During the 2019 drought, a public dispute broke out between representatives of the Chinese Embassy in Bangkok[xliii] and civil society groups in Northern Thailand[xliv] over the role of China’s dams in the drought.[xlv] Given these already existing tensions a transparent and accountable study would be imperative that is inclusive of community concerns in terms of both process and final publication. [xlvi]

Meeting the challenge of climate change

A healthy Lancang-Mekong River is central to maintaining livelihoods, but the river is under stress due to existing challenges in the basin that are increasingly intersecting with climate change. The challenges in the basin and the solutions are to-a-degree technical, but are fundamentally a question of national and regional politics including regarding the competing roles, mandates and authorities of the MRC and LMC, as well as the space for decentralized decision-making and local communities voice.

Whilst recently there have been important steps towards improved water data sharing, more remains to be done. In February 2020, a new program of the MRC called the Joint Environmental Monitoring held its inception workshop that is designed to monitor transboundary environmental impacts from the two recently-commissioned mainstream dam projects in Laos.[xlvii] Meanwhile, as detailed above, the MRC and LMC are undertaking a joint study that may improve data sharing on China’s Lancang dams, although this is not guaranteed. The major gap in regional data sharing at present is dam operation for tributary projects. If meaningfully implemented, better data sharing would facilitate improved advanced warning for droughts and floods, and more accountable basin planning, but only if there is the political will to act on the data.

There are a range of further steps that should be taken including: the need to assess the risks of existing large dams to modified river conditions due to climate change; to consider how existing hydropower projects’ contracts can be rewritten to become multi-purpose schemes; and to explore alternative future electricity scenarios utilizing technologies other than hydropower.

More fundamentally, there is the opportunity to take a more holistic and transformative approach towards managing severe drought and flood through adopting a basin-wide perspective on nature-based solutions, as discussed by UNESCO in the United Nations World Water Development Report 2018[xlviii], and increasing support for community preparedness and culturally appropriate adaptation. The present emphasis on large infrastructure-led approaches to manage severe droughts and floods is already, as evidenced in practiced, revealing its limitations; indeed a ‘control approach’ towards nature has been increasingly critiqued and more flexible approaches that adapt to nature encouraged.[xlix] In the nature-based approach, UNESCO emphasize conserving or rehabilitating natural ecosystems to enhance the storage, quality and availability of water at scales ranging from the micro- to macro, including, for example, forest and wetlands. Necessarily, within such an approach, local community leadership and wider community involvement is central. Meanwhile, enabling in an inclusive, participatory and culturally appropriate way community preparedness and adaptation strategies is important, including effective provision of emergency relief and supporting alternative ways of making a living during periods of severe drought.

———

[i] Director, Center of Excellence in Resource Politics for Social Development, Center for Social Development Studies, Faculty of Political Science, Chulalongkorn University. Email: Carl.Chulalongkorn@gmail.com

[ii] MRC (2019) “Mekong water levels reach low record” 18 July 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-levels-reach-low-record/ [Last accessed 23 Feb 2020]

[iii] MRC (2019) “Drought continues to hit Mekong countries, risking stress on crop production, water shortages” 19 Nov 2019 http://www.mrcmekong.org/news-and-events/news/drought-continues-to-hit-mekong-countries-risking-stress-on-crop-production-water-shortage/ [Last accessed 23 Feb 2020]

[iv] Lovgren, S. (2020) “Southeast Asia’s most critical river is entering uncharted waters” 31 Jan 2020 https://www.nationalgeographic.com/science/2020/01/southeast-asia-most-critical-river-enters-uncharted-waters/ [Last accessed 23 Feb 2020]

[v] e.g see Evers, J. and A. Pathirana (2018). "Adaptation to climate change in the Mekong River Basin: introduction to the special issue." Climatic Change 149(1): 1-11.

[vi] WLE Greater Mekong (n.d.) “Mekong Dams Observatory” https://wle-mekong.cgiar.org/changes/our-research/greater-mekong-dams-observatory/ [Last accessed 23 Feb 2020]; Middleton, C. and J. Allouche (2016). "Watershed or Powershed?: A critical hydropolitics of the ‘Lancang-Mekong Cooperation Framework." The International Spectator 51(3): 100-117.

[vii] UN-Water (n.d.) “Water and Climate Change” https://www.unwater.org/water-facts/climate-change/ [Last accessed 23 Feb 2020]

[viii] MRC (n.d.) “Climate Change” http://www.mrcmekong.org/topics/climate-change/ [Last accessed 11.2.20] and MRC (2019) “State of the Basin Report 2018”

[ix] MRC (2019) “Mekong water related resources need urgent protection, better planning and management, says a new MRC report” 22 Oct 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-related-resources-need-urgent-protection-better-planning-and-management-says-a-new-mrc-report/ [Last accessed 23 Feb 2020]

[x] WWF (n.d.) “Climate Change” http://greatermekong.panda.org/challenges_in_the_greater_mekong/climate_change_in_the_greater_mekong/ [Last accessed 23 Feb 2020]

[xi] MRC (2019) “The Council Study: Study on Sustainable Management and Development of the Mekong River including Impacts of Mainstream Hydropower Projects” http://www.mrcmekong.org/assets/Publications/Council-Study/Key-findings-of-the-Council-Study_26-Nov-18_Revised-4-Jan-19.pdf [Last accessed 23 Feb 2020]  

[xii] McSweeny, R. (2016) “Shifting tropical cyclones increases threat to sinking Mekong delta” https://www.carbonbrief.org/shifting-tropical-cyclones-increases-threat-to-sinking-mekong-delta [Last accessed 23 Feb 2020] and Darby, S. E. et al. (2016) Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity, Nature, doi:10.1038/nature19809

[xiii] Fawthrop, T. (2019) “Dams and climate change are killing the Mekong River” 28 Nov 2019

https://www.todayonline.com/commentary/dams-and-climate-change-are-killing-mekong-river [Last accessed 23 Feb 2020]

[xiv] Warner, K., et al (2009) “In search of Shelter: Mapping the effects of climate change on human migration and displacement.” A policy paper prepared for the 2009 Climate Negotiations. Bonn, Germany: United Nations University, CARE, and CIESIN, Columbia University and in close collaboration with the European Commission “Environmental Change and Forced Migration Scenarios Project”, the UNHCR, and the World Bank.

[xv] Dun, O. (2011). "Migration and Displacement Triggered by Floods in the Mekong Delta." International Migration 49(S1): 200-222; and Chapman, A. and Tri, V.P.D. (2018) “How climate change is triggering a migrant crisis in Vietnam” 25 Jan 2018 https://www.independent.co.uk/environment/climate-change-vietnam-migration-crisis-poverty-global-warming-mekong-delta-a8153626.html [Last accessed 23 Feb 2020]

[xvi] See IHA (n.d.) “Greenhouse gas emissions” https://www.hydropower.org/greenhouse-gas-emissions [Last accessed 23 Feb 2020]

[xvii] Räsänen, T.A. et al (2018) "Greenhouse gas emissions of hydropower in the Mekong River Basin" Environ. Res. Lett. 13 034030 https://iopscience.iop.org/article/10.1088/1748-9326/aaa817

[xviii] EPPO (n.d.) Electricity statistics http://www.eppo.go.th/index.php/en/en-energystatistics/electricity-statistic?orders[publishUp]=publishUp&issearch=1 [Last accessed 23 Feb 2020]

[xix] EGAT (n.d.) “System Installed Generating Capacity: Jan 2020” https://www.egat.co.th/en/information/statistical-data?view=article&layout=edit&id=80 [Last accessed 23 Feb 2020]

[xx] EPPO (2016) Power Purchased from Laos PDR (posted on 29 March 2016) http://www.eppo.go.th/index.php/en/energy-information-services/power-purchased-from-laos-pdr; and EGAT (2020) “System Installed Generating Capacity” (as of January 2020). https://www.egat.co.th/en/information/statistical-data?view=article&id=80 [Last accessed 9 March 2020]

[xxi] Magee, D. and Hennig, T. (2017) “Hydropower boom in China and along Asia’s rivers outpaces regional electricity demand” 28 April 2017. https://www.thethirdpole.net/en/2017/04/28/hydropower-boom-in-china-and-along-asias-rivers-outpaces-regional-electricity-demand/ [Last accessed 23 Feb 2020]

[xxii] Hong, C-S. (2019) “Thailand’s Renewable Energy Transitions: A Pathway to Realize Thailand 4.0” 9 March 2019. https://thediplomat.com/2019/03/thailands-renewable-energy-transitions-a-pathway-to-realize-thailand-4-0/ [Last accessed 23 Feb 2020] and UNESCAP (2018) Energy Transition Pathways for 2030 Agenda for Asia and the Pacific: Regional Trends Report on Energy for Sustainable Development 2018

[xxiii] MRC (2018) “Basin-Wide Assessment of Climate Change Impacts on Hydropower Production” http://www.mrcmekong.org/assets/Publications/Basin-wide-Assessment-of-Climate-Change-Impacts-on-Hydropower-Production_report-13May19.pdf [Last accessed 23 Feb 2020]

[xxiv] RFA (2019) “Laos Pays Compensation to Families of Dead and Missing in PNPC Dam Disaster” 29 Jan 2019. https://reliefweb.int/report/lao-peoples-democratic-republic/laos-pays-compensation-families-dead-and-missing-pnpc-dam [Last accessed 23 Feb 2020]

[xxv] The Lancang River is the name in China of the upper stretch of the Mekong River

[xxvi] Middleton, C. and J. Allouche (2016). "Watershed or Powershed?: A critical hydropolitics of the ‘Lancang-Mekong Cooperation Framework." The International Spectator 51(3): 100-117.

[xxvii] MRC (2019) “Mekong water levels to drop due to dam equipment testing in China” 31 Dec 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-levels-to-drop-due-to-dam-equipment-testing-in-china/ [Last accessed 23 Feb 2020]

[xxviii] MRC (2020) “Weekly Dry Season Situation Report for the Mekong River Basin Prepared on: 07/01/2020, covering the week from 31 Dec 2019 to 5 Jan 2020” https://reliefweb.int/sites/reliefweb.int/files/resources/2020-01-06%20Weekly%20Dry%20Season%20Situation.pdf [Last accessed 23 Feb 2020]

[xxix] MRC (2019) “MRC and China renew pact on water data provision and other cooperation initiatives” http://www.mrcmekong.org/news-and-events/news/mrc-and-china-renew-pact-on-water-data-provision-and-other-cooperation-initiatives/ [Last accessed 9 March 2020]

[xxx]  MRC (2019) “Mekong water levels to drop due to dam equipment testing in China” 31 Dec 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-levels-to-drop-due-to-dam-equipment-testing-in-china/ [Last accessed 23 Feb 2020]

[xxxi] Sivasomboon, B. and Phaicharoen, N. (2020) “Thailand to Air Concerns with River Commission over Drought, Chinese Dams in Mekong” https://www.benarnews.org/english/news/thai/thailand-china-01142020183829.html [Last accessed on 23 Feb 2020]

[xxxii] Zhou, L. (2020) “Thailand nixed China’s Mekong River blasting project. Will others push back?” https://www.scmp.com/news/china/diplomacy/article/3051812/thailand-nixed-chinas-mekong-river-blasting-project-will [Last accessed 9 March 2020]

[xxxiii] Kijewski, L. (2019) “Experts doubt effectiveness of new plan to address Mekong drought” 26 Dec 2019 https://www.aljazeera.com/news/2019/12/experts-doubt-effectiveness-plan-address-mekong-drought-191225010811086.html/ [Last accessed 23 Feb 2020]

[xxxiv] MRC (1995). Agreement on the Cooperation for the Sustainable Development of the Mekong River Basin, 5 April 1995 http://www.mrcmekong.org/assets/Publications/policies/agreement-Apr95.pdf [Last accessed 23 Feb 2020]

[xxxv] MRC (2017) “Mekong Climate Change Adaptation Strategy and Action Plan” http://www.mrcmekong.org/assets/Publications/MASAP-book-28-Aug18.pdf [Last accessed 23 Feb 2020]

[xxxvi] MRC (2019) “State of the Basin Report 2018” http://www.mrcmekong.org/assets/Publications/SOBR-v8_Final-for-web.pdf [Last accessed 23 Feb 2020]

[xxxvii] MRC (2019) “Enhancement of Basin-wide Flood Analysis and Additional Simulations under Climate Change for Impact Assessment and MASAP Preparation” http://www.mrcmekong.org/assets/Publications/Enhancement-of-Basin-wide-Flood-Analysis-27June19.pdf [Last accessed 23 Feb 2020]                                                  

[xxxviii] MRC (2018) “Basin-Wide Assessment of Climate Change Impacts on Hydropower Production” http://www.mrcmekong.org/assets/Publications/Basin-wide-Assessment-of-Climate-Change-Impacts-on-Hydropower-Production_report-13May19.pdf [Last accessed 23 Feb 2020]

[xxxix] MRC (2019) “Drought Management Strategy for the Lower Mekong Basin 2020-2025” http://www.mrcmekong.org/assets/Publications/MRC-DMS-2020-2025-Fourth-draft-V3.0-formatted.pdf [Last accessed 23 Feb 2020]

[xl] LMC (2018) “Five-Year Plan of Action on Lancang-Mekong Cooperation (2018-2022)” https://pressocm.gov.kh/wp-content/uploads/2018/01/ENG-Five-Year-Plan-of-Action-on-Lancang-Mekong-Cooperation-2018-2022.pdf [Last accessed 23 Feb 2020]

[xli] MRC (2019) “MRC Secretariat, LMC Water Center ink first MOU for better upper-lower Mekong management” 18 Dec 2019 http://www.mrcmekong.org/news-and-events/news/mrc-secretariat-lmc-water-center-ink-first-mou-for-better-upper-lower-mekong-management/  [Last accessed 23 Feb 2020]

[xlii] MRC (2019) “Mekong water levels to drop due to dam equipment testing in China” 31 Dec 2019 http://www.mrcmekong.org/news-and-events/news/mekong-water-levels-to-drop-due-to-dam-equipment-testing-in-china/ [Last accessed 23 Feb 2020]

[xliii] Yang Yang “False report undermines Mekong cooperation” Bangkok Post 12.7.19 https://www.bangkokpost.com/opinion/opinion/1711051/false-report-undermines-mekong-cooperation [Last accessed 23 Feb 2020]

[xliv] Roykaew, N. (2019) “Opinion: China must be sincere on the Mekong” 17 July 2019 Bangkok Post https://www.bangkokpost.com/opinion/opinion/1713756/china-must-be-sincere-on-mekong [Last accessed 23 Feb 2020]

[xlv] Sunchindah, A. “Mekong dilemmas need political will to resolve” 26.7.19 https://www.bangkokpost.com/opinion/opinion/1719067/mekong-dilemmas-need-political-will-to-resolve [Last accessed 23 Feb 2020]

[xlvi] Bainbridge, A. (2020) “China's Mekong River dams are generating renewable energy, but are costing locals their livelihoods” 20 Jan 2020 https://www.abc.net.au/news/2020-01-20/china-mekong-river-plan-creates-renewable-energy-but-costs-jobs/11872640 [Last accessed 23 Feb 2020]; Wongcha-um, P. “Missing Mekong waters rouse suspicions of China” Reuters 25.7.19 https://www.reuters.com/article/us-mekong-river/missing-mekong-waters-rouse-suspicions-of-china-idUSKCN1UK19Q?fbclid=IwAR2cMyWj9qSwVRAs7lABnzI7oaD1oCvyjD5TSDcDkWf3CJwDqcU46GY7lUs [Last accessed 23 Feb 2020]

[xlvii] MRC (2020) “Pilot program to monitor impacts from Xayaburi and Don Sahong takes off” http://www.mrcmekong.org/news-and-events/news/pilot-program-to-monitor-impacts-from-xayaburi-and-don-sahong-takes-off/ [Last accessed 9 March 2020]

[xlviii] UNESCO (2018) “Nature Based Solutions for Water: The United Nations World Water Development Report 2018”

[xlix] Allouche, J., Middleton C. and Gyawali, D. (2019). The Water-Food-Energy Nexus: Power, Politics and Justice Routledge-Earthscan: London and New York

JOURNAL ARTICLE: Ontological politics of hydrosocial territories in the Salween River basin, Myanmar/Burma

Publication date: April 2020

Publication: Political Geography, Volume 78

Authors: Johanna M. Götz, Carl Middleton

Abstract:

In this paper, we question an often-unchallenged assumption that we all talk about the same ‘thing’ when talking about water. Taking the Salween River in Myanmar as a case study, we draw on a growing body of hydrosocial literature to analyze the multiple ontologies of water. Conceptually, we take each ontology to be constituted of – and enacted within – a human-more-than-human assemblage, the spatiotemporal dimensions of which demarcate a ‘hydrosocial territory.’ We present three illustrations, namely: the role of the Union Government's National Water Resources Committee and how it manifests and is situated within an ontology of ‘modern Water’; a Karen indigenous initiative to establish a Salween Peace Park and an associated revealing of an ‘indigenous’ ontology; and plans for the construction of mainstream hydropower dams and electricity export to neighboring Thailand, where different water ontologies and their hydrosocial territories collide. We examine how multiple ontologies of water are contested through ‘ontological politics’, whereby human actors compete to further their own interests by naturalizing their ontology while marginalizing others. While not downplaying the role violent conflict plays, we argue that in the Salween basin ontological politics are an underappreciated terrain of contestation through which political authority and the power relations that underpin it are (re)produced, with implications for processes of state formation, territorialization and the ongoing peace negotiations.

Key Words: Salween/Thanlwin River, Resource politics, Multiple ontologies of water, Partially-connected worlds

Read the article here.

BOOK CHAPTER: A State of Knowledge of the Salween River: An Overview of Civil Society Research

9783319774398.jpg

Publication date:
August 2019

Publication:
Knowing the Salween River: Resource Politics of a Contested Transboundary River

Chapter Title:
A State of Knowledge of the Salween River: An Overview of Civil Society Research

Authors:
Vanessa Lamb, Carl Middleton, Saw John Bright, Saw Tha Phoe, Naw Aye Aye Myaing, Nang Hom Kham, Sai Aum Khay, Nang Sam Paung Hom, Nang Aye Tin, Nang Shining, Yu Xiaogang, Chen Xiangxue, Chayan Vaddhanaphuti

Editors:
Carl Middleton and Vanessa Lamb

You can access the chapter here.

For further details on the book and to purchase, please visit Springer.

For more information about our project Salween Water Governance, please visit here.

This chapter presents an overview of civil society research on Salween, providing an overview of the existing knowledge of the basin and a start to identifying key knowledge gaps in support of more informed, inclusive, and accountable water governance in the basin.

Please contact Dr. Carl Middleton for more information.

Citation: Lamb, V., Middleton, C., Saw John Bright, Saw Tha Phoe, Naw Aye Aye Myaing, Nang Hom Kham, Sai Aum Khay, Nang Sam Paung Hom, Nang Aye Tin, Nang Shining, Yu, X., Chen, X. and Vaddhanaphuti, C. (2019) “A State of Knowledge of the Salween River: An Overview of Civil Society Research” (pp 107-120) in Middleton, C. and Lamb, V. (eds.) Knowing the Salween River: Resource Politics of a Contested Transboundary River. Cham, Switzerland: Springer.

BOOK CHAPTER: From Hydropower Construction to National Park Creation: Changing Pathways of the Nu River

9783319774398.jpg

Publication date:
August 2019

Publication:
Knowing the Salween River: Resource Politics of a Contested Transboundary River

Chapter Title:
From Hydropower Construction to National Park Creation: Changing Pathways of the Nu River

Authors:
Yu Xiaogang, Chen Xiangxue, Carl Middleton

Editors:
Carl Middleton and Vanessa Lamb

You can access the chapter here.

For further details on the book and to purchase, please visit Springer.

For more information about our project Salween Water Governance, please visit here.

This chapter explores the range of visions for the Nu River and the extent to which they have materialized through exploring five ‘pathways’, namely: The hydropower construction pathway; the civil society river protection pathway; the energy reform pathway; the national park pathway; and the water conservancy pathway.

Please contact Dr. Carl Middleton for more information.

Citation: Yu, X., Chen, X., and Middleton, C. (2019) “From Hydropower Construction to National Park Creation: Changing Pathways of the Nu River” (pp 49-70) in Middleton, C. and Lamb, V. (eds.) Knowing the Salween River: Resource Politics of a Contested Transboundary River. Cham, Switzerland: Springer

BOOK CHAPTER: Hydropower Politics and Conflict on the Salween River

9783319774398.jpg

Publication date:
August 2019

Publication:
Knowing the Salween River: Resource Politics of a Contested Transboundary River

Chapter Title:
Hydropower Politics and Conflict on the Salween River

Authors:
Carl Middleton, Alec Scott and Vanessa Lamb

Editors:
Carl Middleton and Vanessa Lamb

You can access the chapter here.

For further details on the book and to purchase, please visit Springer.

For more information about our project Salween Water Governance, please visit here.

This chapter examines the hydropower politics of the Salween River, with a focus on the projects proposed in Myanmar and their connections with neighboring China and Thailand via electricity trade, investment, and regional geopolitics.

Please contact Dr. Carl Middleton for more information.

Citation: Middleton, C., Scott, A. and Lamb, V. (2019) “Chapter 3: Hydropower Politics and Conflict on the Salween River” (pp 27-48) in Middleton, C. and Lamb, V. (eds.) Knowing the Salween River: Resource Politics of a Contested Transboundary River. Cham, Switzerland: Springer

BOOK CHAPTER: Introduction: Resources Politics and Knowing the Salween River

9783319774398.jpg

Publication date:
August 2019

Publication:
Knowing the Salween River: Resource Politics of a Contested Transboundary River

Chapter Title:
Introduction: Resources Politics and Knowing the Salween River

Authors:
Vanessa Lamb, Carl Middleton, and Saw Win

Editors:
Carl Middleton and Vanessa Lamb

You can access the chapter here.

For further details on the book and to purchase, please visit Springer.

For more information about our project Salween Water Governance, please visit here.

This chapter provides an overview of key arguments and concepts of the edited volume across three themes: resource politics, politics of making knowledge, and reconciling knowledge across divides.

Please contact Dr. Carl Middleton for more information.

Citation: Lamb, V., Middleton, C. and Saw Win (2019) “Introduction: Resources Politics and Knowing the Salween River” (pp 1-16) in Middleton, C. and Lamb, V. (eds.) Knowing the Salween River: Resource Politics of a Contested Transboundary River. Cham, Switzerland: Springer